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ABSTRACT 17 

The recognition that wetlands play an important role in regulating global climate has led to 18 

management actions intended to maintain and enhance the globally significant amounts of 19 

carbon preserved in wetland soils while minimizing greenhouse gas emissions. Our goal in this 20 

chapter is to review the biogeochemical processes that are relevant to wetland climate 21 

regulation, which we do by discussing: 1) the concepts of radiative balance and radiative 22 

forcing, 2) the mechanisms for wetland carbon preservation, 3) factors influencing greenhouse 23 

gas emissions and other carbon losses, and 4) opportunities for wetland management actions to 24 

influence carbon preservation and flux. Wetland carbon preservation, which reflects the 25 

accumulation of undecomposed organic material, is a function of the redox environment, 26 

organic matter characteristics, and physicochemical factors that inhibit decomposition. However, 27 

the conditions that favor carbon preservation often result in increased emissions of methane 28 

and nitrous oxide such that there is a biogeochemical tradeoff between carbon preservation and 29 

greenhouse gas emissions. The losses of carbon via gaseous and dissolved pathways are 30 

sensitive to environmental disturbances and raise challenges about fully accounting for the 31 

climatic impacts of wetlands. Wetland management and disturbance intentionally or 32 

unintentionally affect biogeochemical processes, such that wise environmental management 33 

offers opportunities to enhance wetland carbon preservation, prevent the destabilization of 34 

accumulated soil carbon, and reduce greenhouse gas emissions, thus maintaining the role of 35 

wetlands as regulators of global climate. 36 

37 
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1 INTRODUCTION 38 

Climate regulation by wetlands is an important ecosystem service that is increasingly a 39 

focus of management and restoration efforts (Erwin, 2009; Moomaw et al., 2018). The basis for 40 

these efforts is the observation that wetlands have accumulated globally significant amounts of 41 

organic carbon in their soils (Mitra et al., 2005), carbon (C) that is no longer in the atmosphere 42 

as the greenhouse gas carbon dioxide (CO2). It is becoming apparent that much of the organic 43 

carbon preserved in wetlands is not inherently resistant to decay but instead accumulates 44 

because its reactivity is reduced under the environmental conditions in wetland soils (e.g., 45 

Spivak et al., 2019). An important corollary of this understanding is that changes to the wetland 46 

environment (e.g., as initiated through management decisions or disturbances) could alter those 47 

conditions, thus destabilizing the large wetland carbon stores and allowing their export to 48 

adjacent aquatic systems as dissolved or particulate carbon or their return to the atmosphere as 49 

CO2 and methane (CH4). Further, some of the wetland conditions that promote carbon 50 

preservation also lead to the production of the greenhouse gases CH4 and nitrous oxide (N2O), 51 

the emissions of which can offset some or all of the climatic benefits provided by wetland carbon 52 

preservation.  53 

Environmental management and other human actions, whether purposeful or accidental, 54 

can affect the pathways of carbon preservation and removal and therefore have the potential to 55 

alter the effects of wetlands on the global climate. In this chapter, we briefly summarize 1) the 56 

concepts of radiative balance and radiative forcing as ways of describing how ecosystems and 57 

management actions influence the climate. We then address 2) the factors that control wetland 58 

carbon preservation. The term “carbon preservation,” which we use throughout this chapter, is 59 

largely synonymous with “carbon sequestration” and “carbon storage.” We use preservation to 60 

emphasize the absence of decomposition; this framework has helped us think about the 61 

processes and mechanisms in a slightly different way. After discussing carbon preservation, we 62 

review 3) the processes leading to emissions of greenhouse gases and other losses of carbon 63 
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from wetlands, before discussing 4) how wetland management can be used to manipulate those 64 

biogeochemical factors that affect wetland carbon preservation and flux. We offer this synthesis 65 

in the hopes that it will help guide wise decisions.  66 

2 RADIATIVE BALANCES AND RADIATIVE FORCING 67 

 The terms “radiative balance” and “radiative forcing” are used when discussing the climatic 68 

impacts of an ecosystem or a management action. While these terms are related, they are 69 

distinct terms that are often – but mistakenly – used interchangeably. The radiative balance of a 70 

wetland or other ecosystem is a static measure of how the ecosystem affects Earth’s energy 71 

budget over a defined time period, typically 100 years. In contrast, radiative forcing is a measure 72 

of how a perturbation to the ecosystem alters Earth’s energy budget. Thus, a change in 73 

radiative balance leads to radiative forcing, which causes the planet to warm or cool. If Earth’s 74 

energy budget does not change (that is, if there is no radiative forcing), then there is no climate 75 

change.  76 

A wide variety of perturbations can affect the radiative balance of a wetland and, therefore, 77 

cause radiative forcing. The radiative balance of an individual wetland can change with changes 78 

in biogeochemistry, which may be accidental or purposefully designed into environmental 79 

management programs in order to influence climate. For example, rates of wetland carbon 80 

sequestration are sensitive to factors including climate, hydrology, and vegetation composition 81 

(Chmura et al., 2003; Loisel et al., 2014). The production and emissions of CH4 vary with soil 82 

water saturation, salinity, and acid rain inputs of sulfate (SO4
2-) and nitrate (NO3

-), among other 83 

factors (Bridgham et al., 2013). Likewise, the rate of nutrient loading to a wetland can alter rates 84 

of N2O emissions to the atmosphere (Moseman-Valtierra et al., 2011). On a broader regional or 85 

global basis, the radiative balance of wetlands can change as the area of wetlands changes. 86 

Despite some regional increases in the areal extent of wetlands (e.g., Niu et al., 2012), there 87 

has been a global loss of wetland area (Millennium Ecosystem Assessment, 2005). The 88 
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direction of radiative forcing (that is, whether the net loss of wetlands has contributed to 89 

warming or cooling of the climate) is dependent on the kinds of wetlands that have been created 90 

and lost. 91 

In order to compare the fluxes of different greenhouse gases, it is necessary to convert 92 

them to a common set of units. The global warming potential (GWP), which is the “time-93 

integrated radiative forcing due to a pulse emission of a given component, relative to a pulse 94 

emission of an equal mass of CO2” (Myhre et al., 2013), has long been used by wetland 95 

scientists to calculate radiative balances and radiative forcing (e.g., Gorham, 1991; Whiting & 96 

Chanton, 2001). For the commonly used 100-year time scale, the GWP of CH4 is 30 and that of 97 

N2O is 265, meaning that a unit mass of CH4 or N2O causes 30 or 265 times more warming, 98 

respectively, than the same mass of CO2 when integrated over a century (Myhre et al., 2013). 99 

Recently, we argued that the use of GWPs is inappropriate when calculating radiative balances 100 

for wetlands and other ecosystems (Neubauer & Megonigal, 2015) because ecosystems 101 

exchange greenhouse gases with the atmosphere year after year, not just as a one-time pulse. 102 

To address this issue, we proposed the sustained-flux global warming potential (SGWP), which 103 

is the “time-integrated radiative forcing due to sustained emissions of a given component, 104 

relative to sustained sequestration of an equal mass of CO2" (Neubauer & Megonigal, 2015; 105 

Neubauer & Verhoeven, 2019). For a gas like CH4, which has a much shorter lifetime than CO2, 106 

the SGWP is very different from the GWP (45 vs. 30 over 100 years). In contrast, because CO2 107 

and N2O have similar average atmospheric lifetimes of roughly 100 years, the 100-year SGWP 108 

and GWP values of N2O are similar (270 vs. 263, respectively; Neubauer & Megonigal, 2015). 109 

The choice of GWP vs. SGWP metrics has large implications for calculating radiative 110 

balances and radiative forcing, especially when CH4 fluxes are involved. Using the SGWP 111 

instead of GWP would make a wetland appear to be a stronger greenhouse gas source (or, a 112 

weaker greenhouse gas sink). Although use of the GWP might be tempting here because “the 113 

numbers look better,” one should be careful to use the most appropriate metric when calculating 114 
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how wetland management and restoration activities will influence radiative forcing. Because the 115 

SGWP is based on continuous fluxes between ecosystems and the atmosphere, it is the better 116 

metric to use when looking at radiative balances in wetlands (Neubauer & Megonigal, 2015). 117 

We have used the SGWP to calculate the radiative balance and radiative forcing for two 118 

hypothetical wetlands (Table 1). At Time 1, Wetlands 1 and 2 had a positive radiative balance 119 

over a 100-year period, indicating that the warming due to CH4 emissions was greater than the 120 

cooling due to long-term carbon preservation in each wetland. For Wetland 1, the radiative 121 

balance was exactly the same in the two time periods because carbon sequestration and CH4 122 

emission rates did not change. Thus, the radiative forcing of Wetland 1 was zero (Table 1) and 123 

its contribution to Earth’s energy budget had not changed over time. In contrast, the radiative 124 

balance in Wetland 2 was lower in Time 2 than in Time 1 due to a management action. This 125 

means that radiative forcing was negative, such that the perturbation (that is, the management 126 

action) applied to Wetland 2 had offset some of the climatic warming from fossil fuel combustion 127 

and land use changes. In this example, Times 1 and 2 correspond to any pair of years. In the 128 

context of the attribution of current climate change, the Intergovernmental Panel on Climate 129 

Change (IPCC) reports radiative forcing relative to the year 1750 (i.e., the pre-Industrial era; 130 

Myhre et al., 2013). Determining what the radiative balance of a wetland was more than 250 131 

years ago presents considerable challenges. 132 

Finally, please note that the GWP and SGWP are properties of greenhouse gases, not of 133 

an ecosystem. We sometimes see them incorrectly used as a synonym for radiative balance, as 134 

in the “global warming potential (GWP) was calculated in CO2 equivalents” or “we observed a 135 

significant difference in GWP between aerobic and anaerobic treatments.” We do not wish to 136 

single out specific authors, so we have purposely not provided citations for these quotes. 137 

Instead, our goal is to illustrate how these terms have been misused in the scientific community. 138 
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3 FACTORS CONTROLLING CARBON PRESERVATION  139 

Wetlands are global hotspots for the preservation of organic carbon in terms of the total 140 

amount of preserved carbon (Sabine et al., 2004), the annual rate of carbon preservation 141 

(Mcleod et al., 2011), and the efficiency of carbon preservation (e.g., >5% of ecosystem net 142 

primary production stored in peatlands vs. <<1% in ocean sediments; Frolking et al., 2010; 143 

Hedges & Keil, 1995). From a climate perspective, organic carbon preserved in a wetland 144 

represents CO2 that was fixed by primary producers in the wetland (or elsewhere) and therefore 145 

is no longer in the atmosphere acting as a greenhouse gas. The long-term preservation of 146 

organic carbon in wetland soils is the major reason why wetlands can have beneficial climatic 147 

effects (Frolking & Roulet, 2007). Below, we discuss factors that contribute to carbon 148 

preservation in wetland soils.  149 

3.1 Carbon inputs 150 

The magnitude of carbon inputs to a wetland determines the maximum rate of carbon 151 

preservation in that wetland, although the actual rate will be considerably lower due to 152 

decomposition of organic carbon and losses of gaseous, dissolved, and particulate carbon from 153 

the wetland (Figure 1). Carbon inputs can be autochthonous (originating within the system, e.g., 154 

CO2 fixation by wetland plants) or allochthonous (originating from outside the system, e.g., 155 

inputs of sediment-associated carbon and terrestrial detritus). The importance of autochthonous 156 

vs. allochthonous inputs varies from one wetland to the next. For example, carbon inputs to 157 

ombrotrophic bogs are dominated by autochthonous production by Sphagnum mosses and 158 

other plants. In contrast, the ratio of autochthonous to allochthonous carbon inputs can be very 159 

different in tidal marshes and other wetlands that are regularly flooded by sediment-laden 160 

waters (e.g., Megonigal & Neubauer, 2019). In order to increase the rate of carbon preservation 161 

in a wetland, one could increase the inputs of poorly reactive organic matter to the wetland 162 

and/or change the environment to increase the carbon preservation efficiency. Note that 163 
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changing the inputs of highly reactive organic matter or altering its rate of turnover does not 164 

directly affect the long-term rate of carbon preservation because highly reactive organic matter, 165 

by definition, is not preserved. However, inputs of highly reactive organic matter can enhance 166 

the decomposition of poorly reactive organic matter through priming effects (Bernal et al., 2017; 167 

Mueller, Jensen et al., 2016) and the decomposition process itself can change highly reactive 168 

organic matter into compounds with lower reactivity (Baldock et al., 2004; Jiao et al., 2010). 169 

Finally, spatiotemporal changes to the wetland environment can alter the reactivity of organic 170 

matter (Section 3.2).  171 

3.1.1 Autochthonous production 172 

Primary production in wetlands can rival that in other highly productive systems such as tropical 173 

rain forests and agricultural systems (Millennium Ecosystem Assessment, 2005). Despite this 174 

generalization, there is considerable spatial and temporal variability in rates of primary 175 

productivity – both between and within wetlands – that is driven by factors including vegetation 176 

type, hydrology, climate, soil properties, and water quality. We focus here on production by 177 

higher plants but recognize that algal production can be substantial in some systems (e.g., 178 

Tobias & Neubauer, 2019 and references therein). Across a wetland landscape, spatial 179 

patchiness in vegetation assemblages can lead to greater temporal evenness in ecosystem 180 

carbon inputs compared to a system with more homogeneous vegetation (Korrensalo et al., 181 

2020). Spatial variations in vegetation type can also influence carbon preservation since the 182 

chemistry of organic matter added to the soil varies with plant species (Belyea, 1996; Dunn et 183 

al., 2016; Kögel-Knabner, 2002). Regular hydrologic pulsing (e.g., tidal rhythms, seasonal river 184 

flooding) enhances productivity versus wetlands with stagnant water or continuous deep 185 

flooding (Brinson et al., 1981; Odum et al., 1995). Interannual variations in sea level cause 186 

corresponding changes in salt marsh plant productivity (Morris et al., 2002). Vegetation 187 

productivity and species composition responds to climate over both short and long periods (e.g., 188 
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Cavanaugh et al., 2014; Feurdean et al., 2019; Johnson et al., 2005; Mendelssohn & Morris, 189 

2000). Rising atmospheric CO2 levels increases production rates of C3 wetland plants but not 190 

C4 plants (Caplan et al., 2015; Curtis et al., 1989; Fenner et al., 2007). This generalization is 191 

supported by wetland studies, but it is worth noting that C4 plants can show positive growth 192 

responses, albeit smaller responses than are seen in C3 plants (Ainsworth & Long, 2005; B. G. 193 

Drake, 2014; Wand et al., 1999). Increasing salinity reduces plant productivity (Sutter et al., 194 

2014), even in plants that are adapted to growing in saline conditions (Mendelssohn & Morris, 195 

2000), although this may be a transient response at the ecosystem scale if the plant 196 

assemblage shifts to become dominated by salt-tolerant plants (Herbert et al., 2015). Although 197 

wetlands are efficient at recycling inorganic nutrients (Hopkinson, 1992; Neubauer, Anderson et 198 

al., 2005), primary production often increases with allochthonous nutrient inputs (Brantley et al., 199 

2008; Morris et al., 2002; Thormann & Bayley, 1997). Soil pH can influence plant productivity 200 

and community composition, especially in highly acidic conditions (Chapin et al., 2004; P. H. 201 

Glaser et al., 1990; MacCarthy & Davey, 1976). Interactions between these factors are common 202 

(e.g., Erickson et al., 2007; Langley & Megonigal, 2010), but discussing them is beyond the 203 

scope of this chapter. 204 

3.1.2 Allochthonous inputs 205 

Wetlands can be sinks for a variety of allochthonous materials including sediment-206 

associated carbon (discussed below), organic detritus, and atmospheric inputs of dust, ash, and 207 

pollen. Organic detritus can take the form of plant material (e.g., leaves, wood) from terrestrial 208 

systems (Fetherston et al., 1995; Holgerson et al., 2016) as well as phytoplankton, macroalgae, 209 

and seagrass detritus from aquatic environments (Hanley et al., 2017; Kon et al., 2012). 210 

Treatment wetlands receive allochthonous carbon inputs in sewage (Nag et al., 2019). Carbon 211 

inputs associated with dust, ash, and precipitation are not often measured and probably are not 212 

important carbon sources in most wetlands.  213 
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Allochthonous sediment-associated carbon can represent a major carbon input to wetlands 214 

that experience (semi)regular overbank flooding (González et al., 2014; Hupp et al., 2019; 215 

Neubauer et al., 2002). The deposition of allochthonous sediments varies as a function of 216 

suspended sediment availability in the water column; the degree of connectivity between the 217 

wetland and channel; the frequency, depth, and duration of tidal flooding; and the biomass and 218 

physical structure of vegetation (Friedrichs & Perry, 2001; Hupp, 2000). The erosion of 219 

sediments from terrestrial landscapes (Wilkinson & McElroy, 2007) has caused increased 220 

deposition of allochthonous sediment (and carbon) to some riverine and estuarine wetlands 221 

(Khan & Brush, 1994), but others have seen reduced sediment inputs due to reservoirs and 222 

levees that restrict sediment movement (Blum & Roberts, 2009; Cabezas et al., 2009). Because 223 

wetlands occupy local topographic low spots, they can be sinks for sediment that is eroded from 224 

surrounding upland ecosystems (Gleason & Euliss, 1998; McCarty & Ritchie, 2002; S. M. Smith 225 

et al., 2001), even in the absence of overbank flooding.  226 

3.2 Mechanisms for carbon preservation 227 

The preservation of organic carbon occurs because the multi-stage process of 228 

decomposition does not always proceed to completion. The emerging understanding of organic 229 

matter decomposition is that the chemical composition of organic matter is important during the 230 

early stages of decay but ecosystem properties drive the overall rates of decomposition (Conant 231 

et al., 2011; Lehmann & Kleber, 2015; Schmidt et al., 2011; Spivak et al., 2019). Organic carbon 232 

that might be highly resistant to decomposition under one set of environmental conditions may 233 

be quickly decomposed under a different set of conditions. By altering the wetland environment, 234 

management activities and disturbances have the potential to alter carbon preservation rates 235 

and (potentially) destabilize organic carbon that has accumulated over centuries to millennia 236 

(e.g., Dorrepaal et al., 2009; Hopple et al., 2020). 237 
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Below, we discuss the factors that contribute to efficient preservation of carbon in wetland 238 

soils. As an organizational framework, we have classified the controls on wetland carbon 239 

preservation into three categories: 1) the redox environment; 2) organic matter characteristics, 240 

and 3) physicochemical inhibition of decomposition. Many of these mechanisms are interlinked 241 

and could fall into multiple categories. 242 

3.2.1 Redox environment 243 

The presence of anoxic soils is a characteristic feature of wetlands and one that plays a key 244 

role in enhancing carbon preservation by affecting the efficiency of carbon metabolism, the 245 

composition of the decomposer community, and the activity of extracellular enzymes (Section 246 

3.2.3.1). The diffusion of O2 slows as soils become water-saturated, leading to typical O2 247 

penetration depths of millimeters to centimeters at the wetland soil surface and around the roots 248 

of vascular plants, where O2 can leak into the soil through the process of root O2 loss (Reddy & 249 

DeLaune, 2008). The importance of redox status for carbon preservation is visually apparent in 250 

wetlands where the drainage of organic soils causes noticeable declines in surface elevation 251 

from the degradation and loss of soil carbon (Figure 2). Rates of soil carbon mineralization are 252 

typically higher under aerobic vs. anaerobic conditions (Table 2; Chapman et al., 2019), 253 

although the initial decay of the most-reactive organic compounds may proceed at similar rates 254 

regardless of whether O2 or an alternate terminal electron acceptor is used (Kristensen & 255 

Holmer, 2001). Bioturbation by crabs and other infauna mixes O2 into the soil, increasing rates 256 

of soil carbon mineralization (Guimond et al., 2020). Litter decomposition can be higher in 257 

oxygenated hummocks than in low-oxygen hollows (Courtwright & Findlay, 2011).   258 

3.2.1.1 Anaerobic metabolism 259 

Where O2 is depleted, a suite of anaerobic pathways can be used by microbes to mineralize 260 

organic carbon to CO2 and/or CH4. Thermodynamics dictates that the energy yield from the use 261 

of alternate electron acceptors proceeds in the order NO3
- (denitrification), Mn(III, IV) 262 
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(manganese reduction), Fe(III) (iron reduction), humic acids (humic acid reduction), SO4
2- 263 

(sulfate reduction), and CO2 (methanogenesis). In an idealized wetland soil, aerobic respiration 264 

would occur in surface soils to the depth where O2 becomes depleted, whereupon denitrification 265 

would occur in deeper soils where NO3
- was available, followed next by the reduction of Mn 266 

oxides, and so on, following the thermodynamic order presented above. The same sequence of 267 

processes would be expected as one moves laterally away from a wetland plant root. In reality, 268 

multiple respiratory pathways can co-exist within the same volume of soil due to microscale 269 

variations in the availability of electron acceptors and electron donors (Angle et al., 2017; 270 

Oremland et al., 1982). 271 

The availability of electron acceptors is important in determining which metabolic pathways 272 

are most important in any given wetland. Regardless of the thermodynamics at standard 273 

conditions, a reaction will not proceed at appreciable rates if its electron acceptor is present at 274 

low concentrations. Thus, low concentrations of NO3
- mean that denitrification often accounts for 275 

≤1% of anaerobic carbon mineralization in wetland soils (e.g., Keller & Bridgham, 2007; 276 

Kristensen et al., 2011; Tobias & Neubauer, 2019). Similarly, differences in the abundance of 277 

Fe(III) explain why rates of Fe(III) reduction are trivial in peatland soils (Keller & Bridgham, 278 

2007) but can account for the majority of anaerobic carbon turnover in soils with more mineral 279 

matter (Kostka et al., 2002; Neubauer, Givler et al., 2005; Roden & Wetzel, 1996; Yao et al., 280 

1999). Likewise, SO4
2- limitation causes methanogenesis to be more important than SO4

2- 281 

reduction in freshwater wetlands (Neubauer, Givler et al., 2005; Weston et al., 2014), with the 282 

relative importance of these processes switching in brackish and saline wetlands as SO4
2- 283 

availability increases (Poffenbarger et al., 2011).  284 

The resupply and regeneration of electron acceptors is necessary to maintain rates of soil 285 

metabolism. Soluble electron acceptors such as NO3
- and SO4

2- can diffuse into the anaerobic 286 

zone or be resupplied by the advective movement of water through the soil. In contrast, solid-287 

phase electron acceptors such as Mn(III, IV) oxides and Fe(III) (oxyhydr)oxides are effectively 288 
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regenerated in situ at aerobic–anaerobic interfaces, including the rhizosphere and walls of 289 

infaunal burrows (Gribsholt et al., 2003; Luo et al., 2018; Neubauer, Givler et al., 2005) or where 290 

moving water delivers O2 to subsurface soils (Roychoudhury et al., 2003). Lastly, electron 291 

acceptors including Fe(III) and SO4
2- can be regenerated in wetlands through anaerobic 292 

chemoautotrophic reactions where the oxidation of Fe2+ is coupled with the reduction of NO3
- 293 

(Straub et al., 2001) and the oxidation of reduced sulfur compounds proceeds with NO3
-, MnO2, 294 

or Fe(III) serving as the oxidant (Schippers & Jørgensen, 2002). The contribution of these 295 

chemoautotrophic reactions to anaerobic carbon cycling is largely unknown (Burgin & Hamilton, 296 

2008; Carey & Taillefert, 2005; but see Schippers & Jørgensen, 2002). 297 

The supply of electron donors is as important as the resupply/regeneration of electron 298 

acceptors in regulating anaerobic metabolism. The energetic potential of an electron donor (that 299 

is, its ability to give up electrons to an electron acceptor) can be summarized in thermodynamic 300 

concepts such as the nominal oxidation state of carbon (NOSC: LaRowe & Van Cappellen, 301 

2011) and the oxidation state of organic carbon (Cox; Masiello et al., 2008). For uncharged 302 

molecules, the difference between NOSC and Cox values is negligible (Hockaday et al., 2009) 303 

and we treat these terms as synonymous. Thermodynamic calculations and experimental 304 

culture work indicate that aerobic microbes can use a wide range of organic carbon molecules 305 

as electron donors, but anaerobic decomposers can use fewer substrates due to 306 

thermodynamic limitations (Keiluweit et al., 2016; LaRowe & Van Cappellen, 2011). As a group, 307 

NO3
- and metal reducers can use many organic molecules as electron donors, including amino 308 

acids, short- and long-chain fatty acids, some aromatic compounds, the monomers (e.g., 309 

glucose) resulting from extracellular enzymatic hydrolysis of polymers, and products of 310 

fermentation such as H2, acetate, lactate, and pyruvate (Küsel et al., 1999; Megonigal et al., 311 

2004; Reddy & DeLaune, 2008). Sulfate reducers are able to use many of the same electron 312 

donors (Christensen, 1984; Parkes et al., 1989; Sørensen et al., 1981), but some cannot use 313 

glucose and other monomers and thus are largely dependent on the activities of fermenters for 314 
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electron donors (Reddy & DeLaune, 2008). The denitrifiers, metal reducers, and SO4
2- reducers 315 

can oxidize electron donors all the way to CO2 (or to H2O, when H2 is the electron donor) or they 316 

can ferment larger molecules to acetate (Megonigal et al., 2004; Reddy & DeLaune, 2008). The 317 

thermodynamics of using CO2 as an electron acceptor means that methanogens can use the 318 

smallest number of electron donors. Hydrogenotrophic methanogens use H2 (and sometimes 319 

formate) as the electron donor while acetoclastic methanogens use acetate as both electron 320 

acceptor and electron donor, with some also able to use methanol, methylated amines, and 321 

methylated sulfur compounds (Bridgham et al., 2013).  322 

3.2.1.2 Decomposer communities  323 

The redox environment affects the community of bacterial and fungal decomposers, with 324 

fungal activity being greatly reduced under anaerobic conditions. Because fungi are capable of 325 

degrading poorly reactive molecules such as lignin and cellulose (Thormann, 2006), the 326 

suppression of fungal activity in anaerobic soils likely enhances carbon preservation. Fungi are 327 

often more important than bacteria in the initial decomposition of litter from wetland and riparian 328 

plants (Hieber & Gessner, 2002; Kuehn et al., 2000; Verma et al., 2003). Fungal abundances 329 

decline with depth from surface litter layers to wetland soil horizons, reflecting the lower O2 330 

availability in the soil (Ipsilantis & Sylvia, 2007). Fungal abundances in bulk anaerobic soil can 331 

be orders of magnitude lower than those of bacteria and archaea (Dang et al., 2019). Given 332 

their redox sensitivity, it is perhaps not surprising that fungal community composition, 333 

extracellular enzyme activities, and soil respiration rates respond to water level changes 334 

(Jassey et al., 2018). However, fungi may be able to transport O2 into anaerobic soils, facilitating 335 

their own aerobic metabolism (Padgett & Celio, 1990), and obligately anaerobic fungi have been 336 

found in the deep biosphere and the guts of ruminants (H. Drake & Ivarsson, 2018 and 337 

references therein), raising questions about the true role of fungi as decomposers in anaerobic 338 

wetland soils. 339 
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3.2.2 Organic matter characteristics 340 

The chemical composition and structure of organic molecules influences their reactivity and 341 

ultimate fate (mineralization vs. preservation) in wetlands. Organic matter has often been 342 

referred to as recalcitrant, meaning highly resistant to degradation, or labile, meaning highly 343 

susceptible to degradation. However, the reactivity of organic matter depends on the chemical 344 

composition of the organic molecule itself and the physicochemical environment. Therefore, we 345 

will avoid using the terms recalcitrant and labile and will instead talk about the reactivity of 346 

molecules, with the recognition that reactivity can vary between different environments (after 347 

LaRowe et al., 2020).  348 

The chemistry of wetland organic matter depends, in part, on its source. For example, lignin 349 

makes up ~15-30% of woody tissue biomass, <10% of the biomass of vascular plants, and is 350 

absent in mosses (Benner et al., 1987; van Breemen, 1995). The concentration of the phenol 351 

sphagnum acid, which is only found in Sphagnum mosses, varies by an order of magnitude 352 

between different species (Rudolph & Samland, 1985). Phytoplankton and benthic microalgae 353 

have lower concentrations of structural carbohydrates (e.g., cellulose) than herbaceous or 354 

woody plants and, therefore, have lower ratios of carbon to nitrogen (N) (Sterner & Elser, 2002). 355 

Differences such as these can influence the preservation of various autochthonous and 356 

allochthonous carbon inputs. 357 

3.2.2.1 Carbon quality 358 

Major classes of organic matter include carbohydrates, proteins and amino acids, lipids, 359 

lignin, and tannins. The reactivity (or “quality”) of organic carbon varies as a function of factors 360 

including its elemental stoichiometry, bond structure, and the degree of oxidation (e.g., NOSC or 361 

Cox). For example, lignin and tannins are phenolic compounds that contain aromatic ring 362 

structures that are difficult to cleave. Proteins and amino acids are rich in nitrogen whereas 363 

carbohydrates lack nitrogen entirely. Carbohydrates range from simple sugars (e.g., glucose) to 364 



Accepted for publication in Wetland Carbon and Environmental Management book 
K.W. Krauss, Z. Zhu, and C.L. Stagg (eds). AGU Books. 

 16 

large polysaccharides (e.g., cellulose, hemicellulose). Lipids are partially or completely 365 

hydrophobic and can have linear, branching, and ring structures.  366 

These compound classes differ in their potential thermodynamic energy yield, as indicated 367 

by their nominal oxidation state of carbon (NOSC) (Table 3). The degree of organic matter 368 

oxidation and the physicochemical environment control which molecules are energetically 369 

available for microbial degradation and which are preserved (Boye et al., 2017; Pracht et al., 370 

2018). Even molecules with a high potential energy yield can be preserved if they contain bonds 371 

that are difficult to cleave (e.g., those in phenolic rings) or if environmental conditions inhibit the 372 

activities of extracellular enzymes of the microbial decomposer consortium. This helps explain 373 

why, for example, there can be high concentrations of tannins in wetlands and surrounding 374 

“blackwater” aquatic systems, even though tannins have the highest NOSC of the major 375 

compound classes (Table 3). Similarly, the persistence of tropical peats despite warm 376 

temperatures is related to high concentrations of aromatic compounds (including phenolics) in 377 

low latitude peatlands (Hodgkins et al., 2018).   378 

As organic carbon undergoes decomposition in wetlands, different molecules are 379 

preferentially mineralized or preserved, leading to changes in the composition of soil organic 380 

matter. The carbon in leaves, stems, and roots of herbaceous plants is more oxidized (higher 381 

NOSC) than that in woody plants, which is consistent with higher rates of decay of non-woody 382 

biomass (Randerson et al., 2006). Leaves with higher lignin concentrations decay more slowly 383 

than those with less lignin (Day, 1982; J. Hines et al., 2014). During decomposition, cellulose 384 

and hemicellulose decay faster than does lignin, as would be predicted by their NOSC values, 385 

and leads to changes in organic matter chemistry over time in both litter and soil (Baldock et al., 386 

2004; Benner et al., 1987; Worrall et al., 2017). 387 

The transformation of organic compounds during the decomposition process creates a 388 

large pool of soil organic matter of altered reactivity in a process called humification. There is 389 

debate as to whether humification generates an amalgamation of small, poorly characterized 390 
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compounds (Sutton & Sposito, 2005), the synthesis of complex macromolecules with a higher 391 

molecular weight than the starting compounds (De Nobili et al., 2020), or if the entire idea of 392 

humification should be abandoned entirely (Lehmann & Kleber, 2015). Regardless, it is clear 393 

that the chemistry of soil organic matter does change during decomposition. For example, 394 

organic matter in deeper peats from bogs, fens, and swamps was more decomposed and less 395 

oxidized (lower NOSC) than surface peat, with most of the change happening within the top 50 396 

cm (roughly the last 200 years) (T. R. Moore et al., 2018).  397 

3.2.2.2 Nutrient availability 398 

The carbon:nutrient ratio of plants is generally larger than that of soil bacteria and fungi, 399 

indicating an imbalance between the supply and demand for nutrients during decomposition 400 

(Hessen et al., 2004; Sterner & Elser, 2002). Indeed, litter decomposition studies often show an 401 

increase in nutrient concentrations over time, reflecting microbial immobilization of nutrients 402 

from the environment (e.g., Conner & Day, 1991). Litter decomposition is sensitive to nutrient 403 

availability in plant litter (Enríquez et al., 1993; Webster & Benfield, 1986) and/or the 404 

environment (Rejmánková & Houdková, 2006; Song et al., 2011). The degradation of plant litter 405 

can be limited by nitrogen availability, as indicated by negative correlations between litter C:N 406 

ratios and rates of decomposition (Keuskamp et al., 2015; Lee & Bukaveckas, 2002; Neely & 407 

Davis, 1985; Song et al., 2011). A similar pattern is seen with phosphorus (P), where higher 408 

litter phosphorus levels can lead to higher decomposition rates (J. Hines et al., 2014). The 409 

decomposition of leaf litter is generally limited by phosphorus when leaf N:P ratios are high and 410 

by nitrogen when leaf N:P ratios are low. Although there is not a universal N:P ratio that 411 

determines when the limiting nutrient changes (Güsewell & Freeman, 2005; Güsewell & 412 

Verhoeven, 2006), plants growing in organic wetland soils are more likely to be limited by 413 

phosphorus whereas plants in mineral substrates often are limited by nitrogen availability 414 

(Bedford et al., 1999). There can be interactions between nutrient availability and carbon quality, 415 
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with higher nutrient levels stimulating decomposition to a greater degree when leaf litter is of 416 

higher quality (i.e., lower lignin content) (Hobbie, 2000). Alternately, the effects of low carbon 417 

quality may limit decomposition regardless of nutrient availability (Bridgham & Richardson, 418 

2003). 419 

3.2.3 Physicochemical inhibition of decomposition 420 

Physicochemical inhibition preserves carbon through physical or chemical interferences 421 

with microbial decomposition processes. We define inhibitory factors as those that prevent 422 

mineralization from proceeding at the potential rate set by the free energy yield of the dominant 423 

redox couples. We treat inhibition as a distinct category but acknowledge that it interacts 424 

strongly with mechanisms that operate through the redox environment (i.e., O2 availability) and 425 

the chemical composition of organic matter. 426 

3.2.3.1 Phenolic inhibition 427 

Phenolic compounds can accumulate and inhibit decomposition under conditions that limit 428 

the activity of phenol oxidase, the enzyme that degrades phenolics. Because phenol oxidase 429 

requires O2 to function, its activity generally is low in fully anaerobic soils, increases in surface 430 

soils, and is greatest in aerobic surface litter (Wright & Reddy, 2001). Although other 431 

extracellular enzymes involved in carbon mineralization exhibit low activities at lower O2 432 

concentrations (Freeman, Ostle et al., 2004; McLatchey & Reddy, 1998), this is probably not a 433 

direct effect of O2 since hydrolytic enzymes do not require O2 to function. Instead, low O2 434 

concentrations result in low phenol oxidase activity, allowing phenolic compounds to accumulate 435 

and inhibit hydrolytic enzymes (Figure 3) (Fenner & Freeman, 2011; Freeman, Ostle et al., 436 

2001). So, the O2-related inhibition of phenol oxidase activity does not just affect the 437 

decomposition of lignin and other phenolic compounds, it inhibits the breakdown of multiple 438 

classes of organic carbon and acts as an “enzymic latch” that preserves large quantities of 439 

carbon in organic wetland soils (Freeman, Ostle et al., 2001). The activity of phenol oxidase is 440 
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also inhibited by moisture limitation, which may help limit carbon mineralization during droughts 441 

when soil O2 concentrations increase (H. Wang et al., 2015). 442 

The enzymic latch mechanism may be most important in wetlands with lignin-poor 443 

vegetation (e.g., those dominated by Sphagnum mosses) and/or those with low soil iron 444 

contents (Y. Wang et al., 2017). Although phenol oxidase activity increases in some wetlands 445 

with water table drawdown (that is, increased O2 penetration into the soil), this is not a universal 446 

response. Instead of being restricted by low soil O2, the activities of phenol oxidase and 447 

hydrolytic enzymes can be enhanced in the presence of Fe2+ (Van Bodegom et al., 2005; Hall & 448 

Silver, 2013; Liu et al., 2014) and, therefore, may decline following a sustained water table 449 

drawdown (Y. Wang et al., 2017). This “iron gate” mechanism differs from the enzymic latch and 450 

suggests that increasing soil oxidation in mineral soil wetlands may help protect against the 451 

decomposition of lignin (Y. Wang et al., 2017). 452 

3.2.3.2 Physical protection 453 

Organic matter can be physically protected from decomposition through chemical 454 

associations with mineral surfaces, by being physically inaccessible in soil pores, or as a result 455 

of encapsulation by humic materials. The importance of these mechanisms has been well-456 

illustrated by studies in terrestrial soils and marine sediments, where organic matter associated 457 

with mineral particles can be preserved for thousands of years yet is rapidly mineralized once 458 

desorbed (Keil et al., 1994; Nelson et al., 1994). For wetlands, more than half of the soil carbon 459 

pool could be protected by minerals at low soil carbon concentrations, but the mineral-protected 460 

fraction necessarily drops as soil carbon concentrations increase (Needelman, Emmer, Emmett-461 

Mattox et al., 2018).  462 

Evidence from soils and sedimentary systems indicates that interactions between organic 463 

carbon and mineral particles play a role in carbon preservation (Hedges & Keil, 1995; 464 

Hemingway et al., 2019; Mayer, 1994a; Torn et al., 1997). In this respect, aluminosilicate clays 465 
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are especially important due to ionic surface charges and the high surface area to mass ratio of 466 

these smallest sediment particles. Early research suggested that organic carbon uniformly 467 

coated aluminosilicate minerals in a monolayer (Keil et al., 1994; Mayer, 1994b), but it now 468 

seems that distribution of organic matter is discontinuous across the mineral surface. Some 469 

areas of the aluminosilicate minerals are carbon-free, whereas other regions contain organic 470 

carbon that is strongly adsorbed to the mineral plus an outer zone characterized by hydrophobic 471 

interactions between sorbed molecules and those in solution (Kleber et al., 2007). Physical 472 

sorption appears to be especially important in protecting organic molecules with low C:N ratios 473 

(e.g., amino acids, proteins) through electrostatic bonds between negatively charged portions of 474 

the clay and positively charged organic side chains (Aufdenkampe et al., 2001). Hydrophobic 475 

organic molecules in solution can interact with the hydrophobic end of molecules sorbed directly 476 

to the mineral surface, creating a membrane-like layer that provides a degree of protection to 477 

the outermost layer of organic molecules (Kleber et al., 2007). Further, the surface of 478 

aluminosilicate minerals contains a multitude of pores of various sizes that 1) increase surface 479 

area versus a (theoretical) pore-free mineral and 2) exclude microbial and/or enzymatic access 480 

to sorbed organic molecules (Jastrow et al., 2007). In sandy subtropical marsh soils, the organic 481 

matter found in pores of 6 µm diameter (versus those of ~200 µm) had a greater thermodynamic 482 

potential (i.e., higher NOSC), a larger level of chemical complexity, and a higher degree of 483 

microbial reactivity (Bailey et al., 2017). Similarly, ~20% of the amino acid nitrogen in an Arctic 484 

tussock soil was physically isolated in pores (Darrouzet-Nardi & Weintraub, 2014). At the 485 

nanoscale, even the smallest extracellular enzymes are largely excluded from pores with 486 

diameters ≤ 8 nm (Mayer, 1994a; Zimmerman et al., 2004). Typical pore sizes vary with 487 

mineralogy (Dalal & Bridge, 1996), but pore diameters are often < 8 nm (Mayer, 1994a), 488 

implying that organic carbon preservation in pores is a widespread mechanism.  489 

Organic matter can be chemically stabilized through sorption and coprecipitation with Fe(III) 490 

(oxyhydr)oxides (Kaiser & Guggenberger, 2000; Lalonde et al., 2012) or by forming a non-491 
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crystalline floc with Fe2+ (Henneberry et al., 2012). For example, the aeration of porewater from 492 

a fen removed 27% of the dissolved organic carbon (DOC) due to coagulation with newly 493 

formed Fe(III) hydroxides (Riedel et al., 2013) and salt marsh soils had up to 50% of their soil 494 

organic carbon stabilized due to associations with Fe(III) (oxyhydr)oxides (Cui et al., 2014). 495 

Protection by iron helps explain why lignin is preferentially preserved in wetland soils. Iron 496 

minerals strongly sorb phenolic molecules (Riedel et al., 2013) and inhibit the mineralization of 497 

lignin but not that of bulk soil organic matter (Hall et al., 2016). At redox interfaces like the 498 

wetland plant rhizosphere, there is dynamic redox cycling of Fe (e.g., Weiss et al., 2004) where 499 

the microbial and chemical dissolution of Fe(III) can release sorbed carbon into solution (Chin et 500 

al., 1998; Knorr, 2013). However, many wetlands contain solid-phase Fe(III) as a coating on 501 

vascular plant roots, in shallow soils where atmospheric O2 penetration occurs, and as Fe-rich 502 

concretions (R. M. Chambers & Odum, 1990; Duan et al., 1996; Emerson et al., 1999; 503 

Mendelssohn et al., 1995). While there is an overall decline in Fe(III) with increasing soil depth 504 

(Cutter & Velinsky, 1988; Griffin et al., 1989), oxidized iron can persist under anaerobic 505 

conditions over geologically relevant time scales (Haese et al., 1997). We have focused here on 506 

the preservation of organic carbon, but wetlands can contain measurable amounts of inorganic 507 

carbon in the form of siderite (FeCO3) (Duan et al., 1996; Hansel et al., 2001; T. Wang & 508 

Peverly, 1999). 509 

Lastly, proteins and amino acids can become encapsulated in humic acids and protected 510 

from hydrolysis. In soils and sediments, humic acid fractions can be hundreds or thousands of 511 

years old yet have high concentrations of amide and amino nitrogen, forms of organic matter 512 

which often are highly reactive (e.g., Hedges & Keil, 1995; Knicker et al., 1996; Mahieu et al., 513 

2002; Zang et al., 2000). The humic acids may be forming a micelle-like structure that traps 514 

reactive organic molecules within the hydrophobic interior of the structure (Zang et al., 2000), 515 

which is consistent with observations that hydrophobic organic contaminants also have a high 516 

affinity for humic acids (De Paolis & Kukkonen, 1997). This protective mechanism may be most 517 
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important at low pH where humic acids form structures with a lower surface–volume ratio 518 

(versus a chainlike structure at higher pH), which enhances the ability of the humic materials to 519 

physically trap organic matter (Myneni et al., 1999). Given the low pH of many peatlands and 520 

their general paucity of mineral matter, the encapsulation of organic matter by humic acids in 521 

peat is likely to be more important than interactions with aluminosilicate clays or iron minerals. 522 

3.2.3.3 pH 523 

Wetland soils span a wide range of pH values, from bogs and pocosins with pH values of 524 

~4 or less to riparian floodplains and other wetlands where the pH can exceed 7.5 (e.g., Jacob 525 

et al., 2013; Richardson, 2003). We focus here on low pH wetlands since that is where pH has 526 

the largest inhibitory effect on carbon mineralization. Rates of CH4 production and emission are 527 

low in acidic wetlands and increase when pH is experimentally increased (Dunfield et al., 1993; 528 

Ye et al., 2012). The suppression of CH4 emissions by low pH occurs through direct inhibitory 529 

effects on the hydrogenotrophic and acetoclastic methanogenic pathways as well as 530 

interference with the fermentative processes that generate the substrates used by methanogens 531 

(Ye et al., 2012). Atmospheric acid deposition also depresses CH4 emission rates, although this 532 

effect is mediated by the competitive suppression of methanogenesis by NO3
- and/or SO4

2- 533 

rather than a direct pH effect (Gauci et al., 2004; Watson & Nedwell, 1998). Rates of soil carbon 534 

mineralization to CO2 are also limited by low pH due to the inhibitory effects of pH on 535 

fermentation (Ye et al., 2012), the suppression of phenol oxidase activity (Williams et al., 2000; 536 

Xiang et al., 2013), a microbial community characterized by slow-growing bacteria (Hartman et 537 

al., 2008), and/or the encapsulation of reactive organic matter by humic acids (Section 3.2.3.2). 538 

Experimental increases of soil pH in the lab often lead to higher rates of CO2 production (e.g., 539 

Ye et al., 2012) although a multi-year field experiment found a decrease in soil CO2 production 540 

rates in response to increased pH, perhaps because the native microbial community was well-541 

adapted to the original low pH environment (Keller et al., 2005). 542 
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3.2.3.4 Temperature 543 

Temperature affects the efficiency of carbon preservation through several related 544 

mechanisms. Firstly, biological processes such as decomposition generally slow down at cooler 545 

temperatures, as demonstrated for multiple indices of decomposition including litter decay, soil 546 

enzyme activities, biological oxygen demand, CO2 and CH4 production and emissions to the 547 

atmosphere, and the hydrologic export of dissolved organic and inorganic carbon (Freeman et 548 

al., 2001; Kadlec & Reddy, 2001; Miller et al., 2001; Neubauer & Anderson, 2003; Segers, 1998; 549 

Treat et al., 2014). Rates of peat decomposition are negligible at temperatures below 0°C and 550 

increase sharply as the liquid water content increases in warmed permafrost soils (Dioumaeva 551 

et al., 2003). Secondly, temperature sensitivities can vary within the consortium of 552 

decomposers, with subsequent effects on the efficiency of carbon mineralization. Terminal 553 

metabolizers (e.g., SO4
2- reducers) can be more sensitive to temperature than are fermenters, 554 

thus leading to the accumulation of fermentation products (e.g., acetate) at lower temperatures 555 

and the limitation of terminal metabolism by the (low) abundance of these compounds at higher 556 

temperatures (e.g., Fey & Conrad, 2003; Weston & Joye, 2005). Indeed, in some high latitude 557 

wetlands, acetate is the terminal end product of anaerobic decomposition (Duddleston et al., 558 

2002; M. E. Hines et al., 2001). Thirdly, changing temperatures can result in vegetation shifts 559 

that change the nature of organic matter inputs to the soil. Along a 40-year progression of 560 

permafrost thaw, rates of potential CO2 and CH4 production were highest in the sites that had 561 

been thawed the longest, a difference mediated by indirect role of temperature in changing 562 

vegetation assemblages and, therefore, the chemistry of organic matter inputs to the soil 563 

(Hodgkins et al., 2014). While cold temperatures contribute to wetland carbon preservation, the 564 

existence of tropical peatlands is strong evidence that temperature is not the only driver 565 

(Hodgkins et al., 2018).   566 
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4 GREENHOUSE GAS EMISSIONS AND OTHER LOSSES 567 

Wetlands are fundamentally open ecosystems that exchange gases, dissolved compounds, 568 

and particulate matter with the atmosphere, surrounding terrestrial ecosystems, and aquatic 569 

environments. A simple mass balance perspective illustrates that whatever autochthonous and 570 

allochthonous carbon is exported from a wetland is, necessarily, not preserved within the 571 

wetland (Figure 1). Management actions can manipulate the factors that cause carbon loss in 572 

order to reduce carbon export or change the form of exported carbon to a more climatically 573 

benign form. 574 

4.1 Greenhouse gas emissions 575 

4.1.1 Carbon dioxide (CO2) 576 

On a mass basis, CO2 almost always accounts for the majority of wetland greenhouse gas 577 

emissions. Growth and maintenance respiration by autotrophs produce CO2, with rates of 578 

autotrophic respiration typically returning ~40–50% of gross primary production to the 579 

atmosphere (Dai & Wiegert, 1996). The mineralization of dissolved and particulate organic 580 

carbon within wetland soils also produces CO2 that is emitted directly to the atmosphere or 581 

dissolved into wetland porewaters. Because CO2 is an end product of most terminal metabolic 582 

pathways, the same factors that enhance carbon preservation (Section 3.2) will tend to reduce 583 

rates of CO2 production, emission, and export.  584 

Wetland CO2 emissions are affected by a variety of climate-related disturbances. Drought 585 

increases soil O2 levels and can remove the enzymic latch that inhibits extracellular enzyme 586 

activities in moss-dominated peatlands (Freeman, Ostle et al., 2001) but not necessarily in 587 

tree/shrub-dominated wetlands due to differences in the quantity and types of phenolic 588 

compounds produced by the different vegetation types (H. Wang et al., 2015). The drying and 589 

warming of wetland soils can stimulate root productivity, especially in shrubs (Malhotra et al., 590 

2020). With increasing atmospheric CO2 levels, enhanced plant productivity and shifts in 591 
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species composition (Caplan et al., 2015; Erickson et al., 2007) have the potential to prime the 592 

decomposition of soil carbon through inputs to the soil of O2 and/or highly reactive organic 593 

matter from enhanced root growth, inclusive of root exudates (Bernal et al., 2017; A. A. Wolf et 594 

al., 2007). In some peatlands exposed to elevated CO2, the activity of the extracellular enzymes 595 

β-glucosidase and phenol oxidase decreased (Fenner et al., 2007) or did not change (Kang et 596 

al., 2005), perhaps because reactive carbon was not limiting at those sites. Using elevation 597 

change as a proxy, elevated CO2 enhanced belowground productivity and increased soil carbon 598 

storage in a brackish tidal marsh (Langley et al., 2009). 599 

The intrusion of saline water into freshwater systems can affect wetland–atmosphere CO2 600 

exchanges. Net ecosystem production is often depressed by saltwater intrusion (Herbert et al., 601 

2018; Neubauer, 2013) but can be unchanged in some years or in response to transient salinity 602 

increases (Herbert et al., 2018). The changes in net ecosystem production reflect salinity-603 

related declines in plant CO2 fixation (Neubauer, 2013; Sutter et al., 2014) and variable 604 

heterotrophic respiration responses to increased salinity (Herbert et al., 2015). Changes in 605 

heterotrophic respiration could reflect a shift from methanogenesis to energetically-favorable 606 

SO4
2- reduction (Weston et al., 2011), reduced activity of extracellular enzymes (Jackson & 607 

Vallaire, 2009; Neubauer et al., 2013), or indirect effects that are mediated through soil organic 608 

matter availability and composition, microbial community structure, soil O2 availability, and/or 609 

nutrient availability (Herbert et al., 2015; Tully et al., 2019).  610 

Fire is an increasingly common feature in many wetlands, especially during drought or 611 

periods of seasonal water drawdown (Hope et al., 2005; Turetsky, Kane et al., 2011) and 612 

intentional land clearing activities (Marlier et al., 2015). Fire represents a pathway for the abiotic 613 

oxidation of wetland biomass and soil organic matter, generating emissions of CO2 (and much 614 

smaller amounts of CH4; Kuwata et al., 2016). Surface fires cause a short-term burst of CO2 615 

emissions as surface vegetation and litter are burned but may promote a decrease in long-term 616 

CO2 emissions if thermally altered organic matter becomes more resistant to microbial 617 
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decomposition (Flanagan et al., 2020). Smoldering fires can burn tens of centimeters of soil 618 

organic matter, converting hundreds to thousands of years of accumulated carbon back to CO2 619 

and significantly increasing global CO2 emissions (Page et al., 2002; Turetsky et al., 2015; 620 

Turetsky, Donahue et al., 2011).  621 

4.1.2 Methane (CH4) 622 

Under anaerobic conditions, the final step of the mineralization of organic carbon results in 623 

the production of CH4, which is carried out by a subset of the Archaea called methanogens 624 

(Bridgham et al., 2013; Megonigal et al., 2004). Methane emissions to the atmosphere reflect 625 

the balance between rates of CH4 production (methanogenesis) and CH4 oxidation 626 

(methanotrophy). Methane also can be produced abiotically by the burning of vegetation and 627 

peat, which can be especially important in years when large peatland fires occur (Kuwata et al., 628 

2016). The last fifteen years have seen reports of aerobic CH4 production by plants (Bruhn et 629 

al., 2012; Keppler et al., 2006), fungi (Lenhart et al., 2012), soil macrofauna (Kammann et al., 630 

2009), and in the water column (Damm et al., 2010; Grossart et al., 2011); the importance of 631 

these pathways in wetlands is unknown. Globally, wetlands are the largest source of CH4 to the 632 

atmosphere, with natural wetlands accounting for 30% of all CH4 emissions (natural + 633 

anthropogenic) and paddies associated with rice cultivation adding another 5% to the total 634 

(Saunois et al., 2016). Although CH4 is a powerful greenhouse gas, wetland CH4 emissions are 635 

not contributing to recent climate change, except to the extent that these emissions have 636 

changed in the last ~250 years (Section 2).  637 

Methanogenesis has the lowest yield of the terminal metabolic pathways so it tends to be 638 

most important when other terminal metabolic pathways are limited by low rates of electron 639 

acceptor resupply/regeneration and/or when supply rates of acetate, H2, and other suitable 640 

electron donors are high enough to relieve competition with other anaerobic decomposers. The 641 

production of CH4 typically requires anaerobic conditions, such that rates of CH4 emissions are 642 
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inversely related to soil O2 levels (Smyth et al., 2019) and rates of methanogenesis drop sharply 643 

in response to decreases in wetland water levels (MacDonald et al., 1998; T. R. Moore & 644 

Knowles, 1989). Oxygen inputs can stimulate aerobic respiration (Mueller, Jensen et al., 2016; 645 

A. A. Wolf et al., 2007) and/or reoxidize alternate terminal electron acceptors (Laanbroek, 2010; 646 

Neubauer, Givler et al., 2005), such that methanogens may be unable to successfully compete 647 

for electron donors. Rates of methanogenesis also can be suppressed by the delivery of 648 

alternate terminal electron acceptors – largely NO3
-, Fe(III), and/or SO4

2- – from saltwater 649 

intrusion (L. G. Chambers et al., 2013; Kroeger et al., 2017; Neubauer et al., 2013), fertilizer 650 

runoff (Bodelier, 2011; Kim et al., 2015), atmospheric deposition (Gauci et al., 2004; Watson & 651 

Nedwell, 1998), and river flooding (Luo et al., 2020).  652 

There is tight coupling between plant activity and CH4 emissions (Whiting & Chanton, 653 

1993), in part because plants produce low molecular weight organic molecules that can be used 654 

by methanogens (Dorodnikov et al., 2011; Megonigal et al., 1999). Plants can also prime the 655 

decomposition of soil organic matter (Basiliko et al., 2012; Bernal et al., 2017), thus providing 656 

substrates that fuel methanogenesis. Plant species composition affects CH4 cycling (Kao-Kniffin 657 

et al., 2010) due to differences in the reactivity of carbon supplied by each vegetation type (e.g., 658 

Chanton et al., 2008). Humic substances inhibit the production of CH4, either through direct 659 

competition between microbial humic reducers and methanogens or, alternately, by abiotically 660 

reoxidizing reduced sulfur compounds and therefore supporting sulfate reducers that 661 

outcompete the methanogens (Heitmann et al., 2007; Keller, Weisenhorn et al., 2009). The 662 

polyphenol sphagnum acid and the polysaccharide sphagnan, both of which are produced by 663 

Sphagnum mosses, can interfere with methanogenic activity (van Breemen, 1995; Bridgham et 664 

al., 2013) and help explain why some peatlands have low rates of methanogenesis despite low 665 

concentrations of inorganic terminal electron acceptors such as Fe(III) and SO4
2- (Galand et al., 666 

2010; Keller & Bridgham, 2007; Vile et al., 2003). 667 



Accepted for publication in Wetland Carbon and Environmental Management book 
K.W. Krauss, Z. Zhu, and C.L. Stagg (eds). AGU Books. 

 28 

Methanotrophy, which oxidizes CH4 to CO2, can proceed aerobically using O2 as the 668 

electron acceptor or anaerobically using the entire suite of alternate terminal electron acceptors 669 

(Bridgham et al., 2013). Whether a wetland emits gas as CH4 or CO2 is unimportant in the 670 

context of a wetland’s carbon budget but has large implications for the radiative balance of the 671 

wetland. On a global basis, the aerobic oxidation of CH4 can prevent 40–70% of the CH4 672 

produced in wetlands from reaching the atmosphere (Megonigal et al., 2004), but it is rare that 673 

annual wetland CH4 oxidation exceeds methanogenesis (that is, very few wetlands are net sinks 674 

for CH4; Bridgham et al., 2006; Harriss et al., 1982; Petrescu et al., 2015). Beyond the first-675 

order control that the aerobic oxidation of CH4 requires O2, the availability of O2 can regulate 676 

methanotrophy when there is a narrow aerobic zone, when CH4 spends little time in the aerobic 677 

zone before being emitted to atmosphere (as would happen when most CH4 emissions are via 678 

ebullition and/or transport through plants), and/or when rates of CH4 production are high 679 

(Megonigal et al., 2004). Conversely, methanotrophy can be limited by the availability of CH4 680 

when rates of CH4 production are low and/or there is a large diffusive aerobic zone (Megonigal 681 

& Schlesinger, 2002). High concentrations of ammonium (NH4
+) inhibit methane oxidation 682 

because both CH4 and NH4
+ compete for the same sites on the enzyme methane 683 

monooxygenase (Bodelier & Frenzel, 1999; Crill et al., 1994). However, it is also possible that 684 

methanotrophs can be nitrogen limited, such that fertilization increases rates of CH4 oxidation 685 

(Bodelier et al., 2000). Like all biological processes, rates of aerobic methanotrophy increase 686 

with increasing temperatures, although methanotrophy is less sensitive to temperature than is 687 

methanogenesis (Segers, 1998).  688 

Rates of the anaerobic oxidation of CH4 can be of the same magnitude as aerobic oxidation 689 

(Smemo & Yavitt, 2007) and, globally, may be comparable to the total CH4 emissions from 690 

freshwater wetlands (Segarra et al., 2015). Rates of anaerobic oxidation of CH4 in wetlands and 691 

wet soils are correlated with rates of CH4 production (Blazewicz et al., 2012; Segarra et al., 692 

2015). The anaerobic oxidation of CH4 can be coupled with the reduction of NO3
- or nitrite (NO2

-) 693 
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(Hu et al., 2014; Raghoebarsing et al., 2006), Mn(III, IV) and Fe(III) (Beal et al., 2009; Egger et 694 

al., 2015), humic acids (Smemo & Yavitt, 2011; Valenzuela et al., 2017), or SO4
2- (Egger et al., 695 

2015; Knittel & Boetius, 2009). It is not always straightforward to identify which electron 696 

acceptors drive the oxidation of CH4 (Gupta et al., 2013; Segarra et al., 2013), but the electron 697 

acceptor likely varies in freshwater vs. saline wetlands, organic vs. mineral soils, and 698 

oligotrophic vs. eutrophic sites, as is the case for terminal metabolism (Section 3.2.1.1 above).  699 

4.1.3 Nitrous oxide (N2O) 700 

Although this chapter is focused on carbon, we will briefly discuss the emissions of N2O. 701 

Recent global wetland emissions of N2O are “negligible” (Anderson et al., 2010), but 702 

management activities and environmental changes have the potential to increase emissions of 703 

this powerful greenhouse gas. The production of N2O, which is a byproduct of both 704 

denitrification and nitrification, is largely controlled by nitrogen availability and soil redox status 705 

(Davidson et al., 2000). Nitrous oxide emissions are greatly enhanced in wetlands exposed to 706 

high nutrient loading (Hefting et al., 2003; Moseman-Valtierra et al., 2011) and inversely related 707 

to soil C:N ratios (Klemedtsson et al., 2005). Further, peatlands that experience drought or 708 

anthropogenic lowering of the water table have higher N2O emissions than those with a high 709 

water table (Pärn et al., 2018; Prananto et al., 2020). The production of N2O is also affected by 710 

the availability of electron acceptors and electron donors, concentrations of hydrogen sulfide, 711 

temperature, and pH (Cornwell et al., 1999; Joye & Hollibaugh, 1995; Megonigal et al., 2004; 712 

Pärn et al., 2018; Parton et al., 1996). 713 

4.1.4 Emission pathways 714 

There are three major pathways by which gases produced in wetland soils can be emitted 715 

to the atmosphere: diffusion, transport through plants, and ebullition. The rate of diffusion of 716 

gases out of a wetland soil is a function of the concentration gradient between soil pore spaces 717 

and the overlying water column or atmosphere, the wetness of the soil, and the amount of 718 



Accepted for publication in Wetland Carbon and Environmental Management book 
K.W. Krauss, Z. Zhu, and C.L. Stagg (eds). AGU Books. 

 30 

atmospheric/water column turbulence (Lai, 2009; Le Mer & Roger, 2001). Because molecular 719 

diffusion is a relatively slow process, rates of CH4 oxidation can be more important when 720 

diffusion is the major route of export from the wetland (Bridgham et al., 2013). However, while a 721 

low water table increases the distance CH4 has to diffuse through oxidized soils and therefore 722 

provides more opportunities for the aerobic oxidation of CH4 (Roslev & King, 1996), this can 723 

occur at the radiative expense of higher rates of N2O production (Pärn et al., 2018).  724 

The aerenchyma tissues that allow vascular wetland plants to transport O2 to their roots 725 

permits gases produced in soils to be efficiently vented through plants by passive diffusion or 726 

(faster) convective gas flows (Colmer, 2003). Gas transport through both herbaceous and 727 

woody plants can account for a substantial portion of total wetland CH4 emissions (Covey & 728 

Megonigal, 2019; Gauci et al., 2010; Neubauer et al., 2000; Pangala et al., 2017; Whiting & 729 

Chanton, 1992). Methane that is transported through plants spends less time in oxidized surface 730 

soils and therefore is less susceptible to being oxidized to CO2 (Joabsson et al., 1999), although 731 

CH4 oxidation can be enhanced in the rhizosphere due to root O2 loss (van Bodegom et al., 732 

2001). There is a temporal coupling between CH4 production and emission in vegetated 733 

wetlands but this relationship breaks down in unvegetated sediments because the lack of 734 

vegetation reduces CH4 emissions and promotes transient CH4 storage (Reid et al., 2013) that 735 

leads to enhanced ebullition.  736 

Ebullition (bubbling) occurs when the local hydrostatic pressure decreases due to changes 737 

in temperature, air pressure, and water levels (Chanton et al., 1989; Männistö et al., 2019; 738 

Tokida et al., 2007), allowing gas bubbles to rise. As with plant-mediated gas transport, the 739 

rapid vertical movement of gas bubbles allows CH4 to quickly transit active CH4 oxidation 740 

regions (Lai, 2009). Rates of ebullition are spatially patchy and temporally variable but can be 741 

the major route of CH4 transport from some wetlands (Devol et al., 1988; Goodrich et al., 2011; 742 

Walter et al., 2006). The importance of ebullition can be substantially lower for CO2 and N2O 743 

due to their higher solubility (McNicol et al., 2017). Because gas transport through plants helps 744 
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prevent the accumulation of gases in soil pore spaces (Reid et al., 2013), ebullition is likely to be 745 

most important in unvegetated wetlands or those with few vascular plants (Stanley et al., 2019). 746 

4.2 Export of dissolved organic and inorganic carbon 747 

Wetland soils contain high concentrations of dissolved organic and inorganic carbon that 748 

can be exported to adjacent surface water and groundwater systems. Quantifying the export of 749 

dissolved forms of carbon requires accurate measures of water flow, which is especially 750 

challenging where flows are bidirectional (e.g., in tidal wetlands) or diffuse (that is, not in defined 751 

channels). The issue is further complicated by the fact that some – but not all – of the carbon 752 

exported from wetlands will end up in the atmosphere as CO2 or CH4. Therefore, accurately 753 

describing the climatic impacts of a wetland requires the accurate quantification of how much 754 

dissolved carbon is exported from the wetland and the ultimate fate of that carbon (that is, 755 

emissions to atmosphere vs. long-term preservation) in downstream aquatic systems.  756 

4.2.1 Dissolved organic carbon 757 

Wetlands are a major source of DOC to streams, lakes, rivers, and estuaries (Childers et 758 

al., 2000; Kristensen et al., 2008; Mulholland & Kuenzler, 1979). DOC export rates depend on 759 

DOC concentrations in soil pore spaces, leaching that occurs directly into the water column 760 

(e.g., of plant litter), and flows of water through the wetland (Dinsmore et al., 2013; Jager et al., 761 

2009; K. C. Petrone et al., 2007). The DOC concentrations in streams draining peat-dominated 762 

catchments have been increasing (Freeman, Evans et al., 2001) as have DOC concentrations in 763 

many rivers and lakes (Evans et al., 2005; Monteith et al., 2007; Skjelkvåle et al., 2005). The 764 

DOC exported from tidal wetlands has distinctive optical properties such as high DOC-specific 765 

absorption, low spectral slope, and high fluorescence that reflect its relatively high molecular 766 

weight and aromatic-rich structure compared to estuarine-derived DOC (Tzortziou et al., 2008), 767 

a property that can be used to observe DOC sourced from tidal wetlands using remote sensing 768 

(Cao et al., 2018). 769 



Accepted for publication in Wetland Carbon and Environmental Management book 
K.W. Krauss, Z. Zhu, and C.L. Stagg (eds). AGU Books. 

 32 

Climate change and alterations in atmospheric chemistry have the potential to increase 770 

rates of wetland DOC export. Rising air temperatures increase wetland DOC concentrations and 771 

cause DOC to become enriched in phenolic compounds (Freeman, Evans et al., 2001), thereby 772 

inhibiting DOC degradation in receiving systems (Freeman et al. 1990). Similarly, there is 773 

generally greater DOC export from tropical vs. boreal peatlands (Drösler et al., 2014). In boreal 774 

and alpine regions, melting permafrost is leading to higher DOC export from wetlands to aquatic 775 

systems (Frey & Smith, 2005), with evidence that this DOC is rapidly consumed by 776 

heterotrophic bacteria or degraded through photochemical mechanisms (T. W. Drake et al., 777 

2015; Selvam et al., 2017). Rising atmospheric CO2 concentrations increase plant productivity in 778 

peatlands and enhance DOC exudation from plants, contributing to increased rates of DOC 779 

export (Freeman, Fenner et al., 2004). Similarly, salt marshes respond to elevated CO2 with 780 

higher porewater DOC concentrations, but only in the plant communities that exhibit CO2-related 781 

increases in growth (C3 but not C4 plants; Keller, Wolf et al., 2009; Marsh et al., 2005). There 782 

can be synergies between elevated CO2 and warming that further increase DOC export (Fenner 783 

et al., 2007). The observed increases in DOC export can also be related to the recovery from 784 

acidification due to atmospheric deposition (Monteith et al., 2007), driven by the increased 785 

solubility of organic matter at higher pH (Evans et al., 2012; Pschenyckyj et al., 2020).  786 

The export of DOC from peatlands is sensitive to water discharge (Dinsmore et al., 2013; 787 

Pastor et al., 2003), which can vary due to changes in precipitation, storage within the wetland, 788 

and/or losses to evapotranspiration. Since climate change is altering the frequency and severity 789 

of precipitation events (Hartmann et al., 2013), this could affect DOC export by changing the 790 

water balance or making export more flashy (Holden, 2005). Following large rain events, there 791 

are increased inputs of DOC to aquatic systems (Jager et al., 2009; Paerl et al., 2018) that can 792 

cause hypoxia and anoxia in downstream aquatic systems (Paerl et al., 1998). In colder 793 

climates, changes in the balance between snow and rain, plus earlier melting of the snowpack, 794 

can change the timing of DOC export (Billett et al., 2012). 795 
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The DOC exported from wetlands is generally “modern” in age (that is, post-1950), which is 796 

consistent with shallow flow paths of water through surface soils (Billett et al., 2012; Evans et 797 

al., 2007; S. Moore et al., 2013; Raymond & Hopkinson, 2003). However, the recent origin of 798 

exported bulk DOC can mask inputs of smaller amounts of millennial-aged DOC, which can be 799 

mineralized upon entry to the aquatic system (Dean et al., 2019). In aquatic systems, DOC from 800 

wetland and terrestrial systems is subject to microbial mineralization, photochemical oxidation, 801 

and flocculation in lakes, streams, rivers, and estuaries (Cole et al., 2007). Much of this 802 

processing occurs in freshwater lentic and lotic systems. The relatively short transit time from 803 

estuaries to the coastal ocean suggests that DOC exported from estuarine wetlands (e.g., salt 804 

marshes) is likely not metabolized within estuaries (Cai, 2011). Although the chemical structure 805 

of terrestrial DOC should make it resistant to decay – certainly in comparison to phytoplankton-806 

derived DOC – very little terrestrial DOC is found in the ocean (Blair & Aller, 2012; Cai, 2011; 807 

Hedges & Keil, 1995).  808 

4.2.2 Dissolved inorganic carbon and methane 809 

Wetlands can export inorganic carbon as dissolved CH4, dissolved CO2 (plus small 810 

amounts of carbonic acid, H2CO3), bicarbonate (HCO3
-), and carbonate (CO3

2-). For consistency 811 

with the literature, we use the term dissolved inorganic carbon (DIC) to refer to the sum of 812 

dissolved CO2, HCO3
-, and CO3

2-; dissolved CH4 will be mentioned specifically when we are 813 

talking about that molecule. Wetland porewaters are often supersaturated with inorganic carbon 814 

that can diffuse into overlying water when a wetland is flooded or can be advectively transported 815 

out of the wetland into adjacent water bodies. The observed supersaturation of CO2 in both 816 

freshwaters (Butman & Raymond, 2011; Regnier et al., 2013) and estuaries (Cai, 2011; Chen et 817 

al., 2013) is partially due to DIC exports from wetlands (Cai & Wang, 1998; Neubauer & 818 

Anderson, 2003; Richey et al., 2002; Tzortziou et al., 2011).  819 
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The export of DIC is a function of porewater DIC concentrations and hydrology. The DIC 820 

concentrations are sensitive to the factors that affect rates of soil respiration and the emission of 821 

CO2 to the atmosphere (Section 4.1.1). In regularly inundated tidal marsh soils, the DIC export 822 

to the estuary parallels seasonal patterns in marsh productivity and respiration (Neubauer & 823 

Anderson, 2003; Z. A. Wang & Cai, 2004). In contrast, when hydrology is less consistent, water 824 

flow has a controlling role on DIC export. For example, precipitation events serve to transfer 825 

porewater DIC into adjacent aquatic systems (Butman & Raymond, 2011). Similarly, dissolved 826 

gases that accumulate in soil during winter can be flushed out during the spring thaw (Billett & 827 

Moore, 2007). 828 

Below, we use DIC flux studies from two wetlands – an acid peat bog in the Central Valley 829 

of Scotland and a tidal freshwater marsh in Virginia, U.S.A. – to illustrate the importance of 830 

water chemistry on CO2 evasion. The hydrologic export of DIC represented a sizeable route of 831 

carbon loss from each system (Dinsmore et al., 2010; Neubauer & Anderson, 2003). In the 832 

stream draining the peat bog, roughly 90% of the exported DIC was emitted to the atmosphere 833 

as CO2 within the local catchment (Dinsmore et al., 2010). In contrast, as water drained from the 834 

marsh, only ~2-6% of the exported DIC was emitted to the atmosphere during a single ebb tide 835 

(Neubauer & Anderson, 2003). In both sites, CO2 evasion to the atmosphere would continue 836 

with additional downstream transport until equilibrium with the atmosphere was achieved. The 837 

lower atmospheric evasion of wetland-derived DIC in the marsh compared to the peatland 838 

reflects the effects of pH on DIC partitioning. The low pH of stream water at the peatland 839 

(annual pH means of 4.5–4.8; Billett et al., 2004) means that the vast majority of the DIC was 840 

exported as dissolved CO2. In contrast, the pH of the marsh tidal creek was 6.4–7.2, such that 841 

19% of the DIC was exported as dissolved CO2 and the remainder as HCO3
- and CO3

2- 842 

(Neubauer & Anderson, 2003). Because carbonate alkalinity does not change due to CO2 843 

evasion (Frankignoulle, 1994), the 81% of the DIC exported as HCO3
- and CO3

2- acts as a 844 

longer carbon sink and may be exported through the estuary to the ocean. The exported 845 



Accepted for publication in Wetland Carbon and Environmental Management book 
K.W. Krauss, Z. Zhu, and C.L. Stagg (eds). AGU Books. 

 35 

alkalinity also plays a role in buffering pH changes in aquatic systems (Sippo et al., 2016). It is 846 

worth noting that high turbulence, as occurs in shallow, fast-moving streams like the one 847 

draining the Scottish peat bog (Dinsmore et al., 2010), can speed the rate of gas evasion but 848 

would not change the amount of wetland-produced CO2 that would ultimately be emitted from 849 

the aquatic system to the atmosphere. 850 

Methane can be exported from wetland soils to adjacent water bodies where, because of its 851 

low solubility, it will quickly equilibrate with the atmosphere. This can be a substantial pathway 852 

of CH4 loss. In a tidal salt marsh, the export of CH4-supersaturated porewater to a tidal creek, 853 

followed by degassing, was as important as CH4 diffusion across the marsh–atmosphere 854 

interface (Bartlett et al., 1985). In a temperate freshwater wetland, nearly a third of the annual 855 

CH4 emissions were released from the water (Poindexter et al., 2016). In peatlands, the 856 

emissions of CH4 from the surface of streams and ponds is on the order of 2-5% of the diffusive 857 

soil–atmosphere fluxes (Billett & Moore, 2007; Dinsmore et al., 2010). 858 

4.3 Erosion and losses of particulate carbon 859 

Wetlands can export particulate organic carbon (POC) through erosion, hydrologic 860 

transport, feeding activities, and direct anthropogenic activities including peat extraction and 861 

timber harvesting. Once POC is mobilized, its fate depends on the chemistry of the exported 862 

carbon and the environment to which it is transported. In some cases, POC can be redistributed 863 

and stored in aquatic sediments or even redeposited back onto the wetland (Hopkinson et al., 864 

2018). However, when POC is solubilized or mineralized to CO2 or CH4, a large fraction is likely 865 

to be returned to the atmosphere (e.g., Brown et al., 2019) and the wetland could change from a 866 

net carbon sink to a source (Pawson et al., 2012). A related question concerns the fate of soil 867 

carbon in coastal wetlands that are drowned by rising sea levels: Will the soil and its preserved 868 

carbon stay intact after the vegetation is lost or will it be eroded and dispersed? This is an area 869 
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of much uncertainty (e.g., DeLaune & White, 2012; Needelman, Emmer, Emmett-Mattox et al., 870 

2018; Pendleton et al., 2012).  871 

Erosion of tidal marshes, peatlands, and other wetlands can represent an important vector 872 

for the transport of soil carbon into adjacent aquatic systems. The potential importance of POC 873 

exports via erosion can be inferred from metrics like the drainage density (that is, km of channel 874 

per km2 of wetland) or the extent of wetland edge (Pawson et al., 2012). There is abundant 875 

evidence that aboveground plant biomass can reduce erosion by dissipating turbulence and 876 

wave energy, even under storm surge conditions (Duarte et al., 2013; Gedan et al., 2011; Möller 877 

et al., 2014). Belowground, the network of intact roots and rhizomes helps bind soils, increasing 878 

their shear strength and resistance to erosion (Micheli & Kirchner, 2002). Thus, reductions in 879 

plant biomass – aboveground or belowground – can make the wetland more susceptible to 880 

erosion and losses of particulate organic carbon (Deegan et al., 2012; Shuttleworth et al., 2015; 881 

Silliman et al., 2012; Walter et al., 2006). Surface soils in wetlands can be mobilized by rain 882 

events (Mwamba & Torres, 2002; Tolhurst et al., 2006). Marsh biota can also facilitate erosion, 883 

either directly through activities like bioturbation (S. M. Smith & Green, 2013) or indirectly 884 

through grazing that removes the stabilizing influence of wetland vegetation (T. J. Smith & 885 

Odum, 1981; Visser et al., 1999).  886 

Particulate organic carbon can be exported as water moves across wetland surface or as 887 

the biomass of consumers that feed in the wetland. In tidal wetlands, for example, large 888 

accumulations of dead plant material (“wrack”) can be redistributed within a wetland or exported 889 

to the estuary, especially during spring tides and large storms (Hackney & Bishop, 1981; 890 

Hemminga et al., 1990). Aquatic, terrestrial, and avian consumers are able to forage on the 891 

wetland surface, consuming organic matter and removing it when they leave the wetland (Fritz 892 

& Whiles, 2018; Gurney et al., 2017; Kitti et al., 2009; Klopatek, 1988; Wantzen et al., 2002), but 893 

this likely does not impact long-term carbon preservation. 894 
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Lastly, POC can be lost from wetlands through directed anthropogenic activities. The 895 

extraction of peat for fuel and horticultural purposes removes the preserved soil carbon and 896 

results in the emission of CO2 back to the atmosphere through combustion or decomposition 897 

(Cleary et al., 2005). Further, peat extraction typically destroys the living vegetation, resulting in 898 

the loss of the wetland carbon sink (Waddington et al., 2010). The logging of forested wetlands 899 

can be specifically for harvesting timber (Hutchens et al., 2004) or may be incidental to 900 

preparing a site for agriculture or aquaculture (Page et al., 2009; Richards & Friess, 2016). 901 

Some wetlands are used directly for grazing of livestock or the plants are harvested for off-site 902 

use (Harrison et al., 2017; Morris & Jensen, 1998; D. C. Smith et al., 1989). Whenever 903 

significant amounts of primary production are removed, wetland soil carbon pools and long-term 904 

preservation rates can be affected (Morris & Jensen, 1998). 905 

5 MANAGEMENT OF WETLAND CARBON PRESERVATION AND FLUX 906 

Carbon capture, preservation, and flux are foundational processes that govern all facets of 907 

wetland ecosystem function, and are thus both the target of, and a response to, management 908 

activity. Wetland management and disturbance intentionally or unintentionally affect the 909 

biogeochemical mechanisms that preserve organic matter, with consequences for coupled 910 

element cycles such as nitrogen mineralization. Here we consider how biogeochemical 911 

processes can be manipulated to increase carbon preservation, decrease greenhouse gas 912 

emissions, or improve water quality. Our goal is to highlight some common management actions 913 

rather than provide a thorough overview of this topic; we leave that to the collective efforts of the 914 

other authors in this volume.  915 

5.1 Managing the redox environment 916 

The redox environment, organic matter characteristics, and physicochemical inhibition are 917 

biogeochemical mechanisms that can be manipulated to enhance wetland carbon preservation. 918 

From a management perspective, the most important of these is redox, which leverages the 919 
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large difference in free energy yield of microbial respiration in the presence versus absence of 920 

O2. Redox manipulation is the goal of the age-old technique of raising or lowering water table 921 

depth through structures that drain or impound water (McCorvie & Lant, 1993; Rozsa, 1995), 922 

and a largely unintended consequence of other activities such as tree thinning in forested 923 

wetlands (Jutras et al., 2006) and road construction (Winter, 1988). Draining removes water 924 

from soil pore spaces, dramatically increasing the rate of O2 diffusion into the rooting zone. As 925 

the rate of O2 flux rises to exceed O2 demand, aerobic respiration becomes the dominant 926 

microbial respiration pathway, leading to faster decomposition rates and a decline in soil carbon 927 

stocks (Armentano & Menges, 1986). 928 

 Subsidence of the soil surface is a nearly universal consequence of prolonged drainage 929 

because many wetland soils are carbon-rich and carbon loss translates into a loss of soil mass 930 

and volume (Figure 2). As such, subsidence is a useful metric of soil organic matter stock 931 

change in peatlands and other wetlands with organic-rich soils. The relative contributions of 932 

microbial respiration, compaction, fire, and wind erosion to soil elevation change can be 933 

modeled to infer that accelerated microbial respiration is a primary driver of elevation loss 934 

(Deverel et al., 2016; Ewing & Vepraskas, 2006). As expected of redox-driven organic matter 935 

preservation, subsidence is positively related to water table depth below the soil surface, and 936 

rates are higher at sites where the water table is drawn down continuously rather than where it 937 

fluctuates seasonally (Carlson et al., 2015; Stephens et al., 1984). Rates of subsidence are 938 

fastest during the years immediately following the drawdown of the water table and slow as the 939 

soil surface approaches the lowered water table (Figure 2). This is related to multiple factors 940 

including a decline in the volume of soil located in the aerobic zone, decreases in organic matter 941 

quality as the most reactive compounds are preferentially lost, and enrichment in soil mineral 942 

content as the organic fraction is decomposed (Bhadha et al., 2009).  943 

 The global impact of drainage on soil carbon stocks was originally estimated by 944 

Armentano and Menges (1986) at 239–319 Mt CO2 yr-1 in 1980. Subsequent estimates are 945 
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larger by a factor of 4 or more with rates of 1,298 Mt CO2 yr-1 in 2008 (Joosten, 2010). The 946 

increase reflects continuing carbon losses from historical drainage (Drexler et al., 2009; Hooijer 947 

et al., 2012) and extensive new drainage activity in tropical peatlands, where peat loss to 948 

microbial respiration can be comparable to CO2 emissions from instantaneous oxidation due to 949 

fire (Couwenberg et al., 2010; Hergoualc’h & Verchot, 2014). Vast areas of tidal marshes have 950 

been drained and “reclaimed” for agriculture in China (Ma et al., 2014) and mangrove forests 951 

are excavated for shrimp and salt ponds, releasing large amounts of soil carbon (Kauffman et 952 

al., 2014). The global impact of land use/land cover change on coastal wetlands, riparian 953 

wetlands, and peatlands is to decrease net CO2 uptake by 70–457% compared to their natural 954 

state (Tan et al., 2020). The sole exception to this pattern is the creation of relatively fresh 955 

wetlands from saline coastal wetlands, which perhaps increases NPP by relieving salt stress, 956 

although (from a radiative forcing perspective) this may be offset by increased CH4 emissions.   957 

Hydrologic restoration to wetland vegetation (Knox et al., 2015) or rice agriculture (Deverel 958 

et al., 2016) can dramatically slow the rate of soil organic carbon loss but recovery of soil 959 

carbon stocks requires decades to centuries (Craft et al., 2003; O’Connor et al., 2020; Sasmito 960 

et al., 2019). Rewetting tends to reduce CO2 emissions (Wilson et al., 2016; Xu et al., 2019) with 961 

the magnitude of change varying with factors such as climate, site nutrient status, antecedent 962 

water table depth, and chemical composition of soil organic matter.  963 

 Counterintuitively, rewetting can increase CO2 emissions in some circumstances (R. M. 964 

Petrone et al., 2003; Waddington et al., 2010). There are instances where wetland responses to 965 

drainage or drought do not follow the expected pattern of increased CO2 emissions and soil 966 

carbon loss (Laiho, 2006; H. Wang et al., 2015), results that run counter to expectations based 967 

solely on redox control of decomposition rates and reflect regulation by other factors. For 968 

example, poor substrate quality prevented an increase in soil respiration in response to three 969 

years of experimentally imposed drought in a minerotrophic fen (Muhr et al., 2011); rewetting 970 

increased decomposition in a peatland because a preceding drought triggered an increase in 971 
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enzyme activity (Bonnett et al., 2017); and drought or drainage can suppress decomposition 972 

rates indirectly through plant community composition changes that favor species with phenolic-973 

rich tissue (H. Wang et al., 2015). 974 

5.2 Managing organic matter characteristics  975 

Chemical composition and the structure of chemical bonds strongly influence the 976 

preservation of organic matter. The wide variety of methods used to quantify chemical 977 

composition reflects the chemical complexity of organic matter including the content of specific 978 

classes of organic compounds (Section 3.2.2.1); ratios involving specific elements such as C:N 979 

ratio or lignin:N ratio; and quantification of functional organic matter moieties such as the O-alkyl 980 

carbon content or syringyl-to-vanillyl ratio. Chemical composition is applied to wetland 981 

management primarily for understanding decomposition responses to disturbance or 982 

manipulation. For example, aerobic microbial respiration rates across a depth sequence of soils 983 

from a drained peatland was well explained by the abundance of O-alkyl carbon (Figure 4), 984 

suggesting that soil carbon quality data can be used to improve models of soil carbon loss in 985 

response to drainage or drought (Leifeld et al., 2012). 986 

Organic matter composition is rarely the direct target of wetland ecosystem management 987 

activities. Perhaps the most common management application for plant chemical composition 988 

control of decomposition is in the design of wetlands for wastewater treatment, in which C:N 989 

ratios are manipulated to maximize nitrogen removal while minimizing greenhouse gas 990 

emissions. A review of constructed wetland designs concluded that a ratio of chemical oxygen 991 

demand to nitrogen of 5:1 optimizes nitrogen removal versus N2O in free-flowing systems, and a 992 

C:N ratio of 5:1 minimizes CH4 emissions in vertical subsurface systems (Maucieri et al., 2017). 993 

Such ratios can be manipulated through selection of plant species that vary in C:N ratio, lignin 994 

content, or other relevant traits (Moor et al., 2017). Similarly, there may be opportunities during 995 
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wetland restoration projects to select plant species that will promote carbon preservation, while 996 

also balancing other project objectives. 997 

Wood has chemical and physical properties that can be leveraged for management of 998 

restoration of herb-dominated wetlands. For example, Fenner and Freeman (2020) proposed 999 

that wood amendments preserve soil carbon during drought, a technique that is untested in the 1000 

field but founded on a well-developed understanding of the physicochemical inhibition of 1001 

decomposition by phenolic compounds. Similar considerations suggest that sequestration rates 1002 

can be improved by encouraging higher woody plant species cover, a process that is occurring 1003 

unintentionally through climate-driven invasion of herbaceous-dominated tidal marshes by 1004 

woody mangrove species (Doughty et al., 2016). The high lignin content of wood is the basis of 1005 

adding wood chips to restored wetland soils in order to reduce compaction and therefore the 1006 

negative effects of restoration construction on plant growth (E. C. Wolf et al., 2019). 1007 

Plant chemical composition is one of several interacting factors that set the molecular 1008 

structure of soil organic matter (Kögel-Knabner, 2002; Schmidt et al., 2011), which is an 1009 

important control on the soil carbon pool response to disturbance. A history of O2 exposure 1010 

results in compounds that are resistant to decomposition under aerobic conditions, making the 1011 

ecosystem less responsive to periodic drought or drainage (Muhr et al., 2011). Carbon 1012 

mineralization rates in drained wetlands generally decline over time as surficial, labile carbon 1013 

pools are lost, a pattern due in part to the increasing age and declining carbon quality of soil 1014 

organic matter with increasing soil depth (Evans et al., 2014; Leifeld et al., 2012). Lab 1015 

incubations designed to isolate factors such as chemical composition suggest that the sensitivity 1016 

of soil organic matter decomposition to O2 availability varies widely among wetland ecosystem 1017 

types (Table 2), as does the potential to produce CH4 under anaerobic conditions (Chapman et 1018 

al., 2019). Thus, the potential for rewetting to reduce both CO2 emissions and CO2-equivalent 1019 

CH4 emissions varies considerably and for reasons that are not well understood. 1020 
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5.3 Managing physicochemical Inhibition 1021 

 The availability of O2 regulates carbon preservation through mechanisms other than the 1022 

often-cited high free energy yield of aerobic respiration, a thermodynamic constraint on 1023 

decomposition rates. By contrast, kinetic constraints are imposed by the activity of extracellular 1024 

enzymes required to break chemical bonds. As discussed earlier (Section 3.2.3.1), the enzymic 1025 

latch hypothesis states that the absence of O2 triggers a series of events leading to the 1026 

accumulation of phenolic compounds, which inhibit the hydrolase enzymes that cleave organic 1027 

bonds (Figure 3; Freeman, Ostle et al., 2001). The hypothesis has been invoked to explain slow 1028 

decomposition rates in peatlands and to speculate that the concentration of inhibitory phenolics 1029 

could be manipulated to suppress decomposition rates in peatlands (Freeman et al., 2012). 1030 

Raising the water table depth achieves this by limiting O2 availability, but it may be possible to 1031 

achieve similar results by altering pH, adding reductants, or manipulating plant traits through 1032 

genetic engineering or plant species composition (Freeman et al., 2012).  1033 

The response of extracellular enzymes such as phenol oxidase to management can be 1034 

complex and generate a wide range of carbon responses ranging from increased carbon 1035 

preservation to increased carbon mineralization. In an elaboration of the enzymic latch 1036 

hypothesis, the increase in enzyme activity and decomposition rate triggered by O2 exposure 1037 

leads to higher nutrient availability and soil pH, which in turn increases decomposition in a 1038 

positive feedback loop that persists for months to years after the soil has been rewetted 1039 

(Bonnett et al., 2017; Fenner & Freeman, 2011). Another nuance of the enzymic latch 1040 

hypothesis is that drainage or drought may inhibit phenol oxidase activity due to low soil water 1041 

content. Under such conditions, rewetting will increase the activity of the enzyme and stimulate 1042 

decomposition rates (H. Wang et al., 2015). Management activities based on assumptions 1043 

about water level controlling decomposition rate should also consider the response of inhibitory 1044 

phenolic compounds. 1045 



Accepted for publication in Wetland Carbon and Environmental Management book 
K.W. Krauss, Z. Zhu, and C.L. Stagg (eds). AGU Books. 

 43 

Microbial access to organic matter can be physically inhibited by mineral-carbon 1046 

interactions that operate in intact wetlands via sorption onto surfaces and co-precipitation of 1047 

DOC (Hedges & Keil, 1995; Lalonde et al., 2012). Mineral soils tend to be rich in Fe- and Al-1048 

oxides that preserve organic matter by forming bonds and physical structures that interfere with 1049 

microbial degradation (LaCroix et al., 2018), so increasing the availability of minerals could 1050 

enhance carbon preservation. Dredged sediments from navigation channels are sometimes 1051 

used to create new wetland islands or are added to tidal marshes to increase elevation 1052 

(Cornwell et al., 2020; Streever, 2000). The ability of dredge spoils to enhance the preservation 1053 

of wetland carbon through physical inhibition of decomposition depends on whether their 1054 

mineral surfaces are already saturated with organic carbon, which is likely to be site specific. 1055 

Some deltaic sediments tend to have less than a monolayer-equivalent coating of organic 1056 

carbon due to enhanced mineralization resulting from O2 exposure during periodic reworking 1057 

events (Blair et al., 2004), but we do not know the extent to which this applies to river and 1058 

harbor sediments. Organic-mineral interactions are promoted in the wetland plant rhizosphere 1059 

by root O2 loss driving deposition of poorly crystalline iron oxides (Weiss et al., 2005), some of 1060 

which are stable under anaerobic conditions (Henneberry et al., 2012; Shields et al., 2016). 1061 

Drainage triggers ferrous iron oxidation and increases mineral protection of organic matter, 1062 

provided there is sufficient iron in the soil to support this carbon-stabilizing process (LaCroix et 1063 

al., 2018). The possibility that iron amendments could be used to stabilize carbon in drained 1064 

soils has not been investigated to our knowledge. Biochar amendments may enhance wetland 1065 

carbon preservation by altering microbial assemblages and stabilizing existing organic-mineral 1066 

complexes (Zheng et al., 2018); the same mechanism helps explains the high-organic terra 1067 

preta soils in the Amazon basin (B. Glaser & Birk, 2012).  1068 

Soil pH also exerts strong control on decomposition rates and is negatively correlated with 1069 

soil carbon preservation. Regulation of extracellular enzyme activity is one mechanism by which 1070 

pH interferes with decomposition and has been cited as a reason why soil carbon pools 1071 



Accepted for publication in Wetland Carbon and Environmental Management book 
K.W. Krauss, Z. Zhu, and C.L. Stagg (eds). AGU Books. 

 44 

sometimes increase in response to drainage or decrease in response to rewetting (Fenner & 1072 

Freeman, 2011). In northern peatlands, pH exerts indirect control on soil carbon stocks by 1073 

favoring Sphagnum species that decompose slowly (low pH) or vascular species that 1074 

decompose relatively quickly (high pH). Thus, pH manipulation to favor one functional plant 1075 

group over another is one option for altering carbon preservation (e.g., Beltman et al., 2001). 1076 

Temperature regulates the rates of all biological, physical, and chemical processes that 1077 

control organic matter decomposition, and is another physicochemical factor that may cause 1078 

unexpected soil carbon responses to drainage. For example, short-term lab and field drainage 1079 

in wet tussock tundra tends to increase soil organic matter decomposition rates, as expected, 1080 

but feedbacks operating at larger spatiotemporal scales involving plant community shifts and 1081 

their effects on snow cover, albedo, and thermal balance have the potential to slow permafrost 1082 

degradation and preserve soil carbon (Göckede et al., 2019). Feedbacks involving wetland 1083 

responses to a warming planet include shifting plant distributions, changing estuarine salinity 1084 

distributions, and altered wetland hydrology, all of which can directly or indirectly impact the 1085 

preservation of wetland carbon. Incorporating large-scale feedbacks into wetland management 1086 

activities is a contemporary challenge.  1087 

5.4 Managing greenhouse gas emissions 1088 

The emission of greenhouse gases is one of several ecosystem processes to consider 1089 

when managing, restoring, or conserving wetlands. Greenhouse gas management is 1090 

challenging because wetlands tend to simultaneously act as CO2 sinks and CH4 or N2O 1091 

sources. Management decisions based solely on greenhouse gas emissions have the potential 1092 

to create perverse incentives leading to degraded ecosystem function. However, there are many 1093 

opportunities to reduce greenhouse gas emissions as one goal of overall ecosystem 1094 

management because wetland greenhouse gas emissions typically increase in response to land 1095 

use/land cover change (Figure 5; Tan et al., 2020). 1096 
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Tan et al. (2020) performed a meta-analysis of the greenhouse gas consequences of land 1097 

use/land cover change (LULCC) on coastal wetlands, riparian wetlands, and peatlands and 1098 

found that anthropogenic disturbances increase radiative forcing by 65–2,949% compared to 1099 

their natural state (Figure 5), amounting to 0.96 ± 0.22 Gt CO2-eq yr-1, which is equivalent to 1100 

~8–10% of annual global emissions due to LULCC. Changing emissions of CO2 contributed to 1101 

radiative forcing because ecosystem respiration increased more than did gross primary 1102 

production, reflecting the fact that wetland LULCC frequently involves drainage. The direction of 1103 

LULCC on CH4 emissions is typically opposite that of CO2, with systems changing from net 1104 

sources of CH4 to smaller net sources (or sinks) due to increased O2 flux (Knox et al., 2015). 1105 

Radiative forcing from N2O occurs when LULCC activities are accompanied by nitrogen loading 1106 

from fertilizer or manure. Reducing fertilizer applications and managing runoff from agricultural 1107 

fields that drain to wetlands is one option for managing N2O emissions (Verhoeven et al., 2006) 1108 

Coastal wetlands have the potential to sequester carbon at relatively high rates while 1109 

emitting CH4 at low rates (Poffenbarger et al., 2011), making them attractive for ecosystem 1110 

management and carbon financing projects (Needelman et al. 2018, Moomaw et al. 2018). 1111 

Hydrologic restoration and management of degraded sites tends to increase soil carbon 1112 

sequestration, achieving rates similar to natural sites after two decades in many cases (Craft et 1113 

al., 2003; O’Connor et al., 2020). However, the increase in carbon sequestration can be 1114 

accompanied by an increase in CH4 emissions resulting in net radiative forcing (O’Connor et al., 1115 

2020). Uncertainty in spatiotemporal variation in CH4 emissions and the factors that regulate this 1116 

variation are a significant barrier to wetland management for greenhouse gas reduction 1117 

(Holmquist et al., 2018). 1118 

 The global potential to manage wetlands for greenhouse gas reductions is limited by 1119 

their area and the biogeochemically imposed trade-off between CO2 preservation and CH4 1120 

emissions. Yet, wetland management can make a significant contribution to nature-based 1121 

climate solutions (Fargione et al., 2018). For example, at least 27% of U.S. coastal marshes 1122 
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have been freshened due to tidal restrictions, so the restoration of (saline) tidal rhythms could 1123 

reduce radiative forcing by 12 Tg CO2-eq yr−1 by reducing CH4 emissions (Fargione et al., 2018; 1124 

Kroeger et al., 2017). Reconnecting wetlands to (freshwater) rivers through the construction of 1125 

large-scale river diversions could also suppress CH4 emissions by supplying NO3
-, Fe(III) 1126 

oxides, and SO4
2-, although these effects may be limited to the immediate vicinity of the 1127 

diversions (Holm et al., 2016). In the U.S., the radiative balance of CO2 and CH4 fluxes is 1128 

favorable for restoring peatlands and seagrass meadows (9 and 6 Mg CO2-eq ha−1 yr−1, 1129 

respectively), and for avoided losses of seagrass (7 Mg CO2-eq ha−1 yr−1; Fargione et al., 2018). 1130 

In cases where wetland restoration or creation would cause greenhouse gas emissions to 1131 

increase (O’Connor et al., 2020), techniques such as transplanting intact soils and plants can 1132 

minimize these impacts by avoiding soil disturbances that otherwise favor greenhouse gas 1133 

emissions (Moomaw et al., 2018 and references therein). Methane emissions often vary 1134 

between patches of different vegetation types (Kao-Kniffin et al., 2010; Mueller, Hager et al., 1135 

2016; Villa et al., 2020) due to a variety of plant traits that affect the production, oxidation, and 1136 

transport of CH4 (Moor et al., 2017; Section 4.1.4). This suggests that greenhouse gas 1137 

emissions could be managed in restoration projects through careful selection of plant species 1138 

composition. To do so, it is important to realize that the influence of different plant traits on CH4 1139 

emissions cannot be entirely understood from short-term flux measurements because they fail 1140 

to capture ebullition and hydrologic export. For example, Bansal et al. (2020) reported that 1141 

short-term CH4 fluxes were 5-times higher from planted vs. plant-free sediments, but when they 1142 

accounted for pulses of CH4 release, total emissions were equal between sites. Thus, the 1143 

influence of plant species must account for the full CH4 budget and not rely entirely on 1144 

inferences based on diffusive flux rates. One challenge to implementing wetland activities in 1145 

carbon financing systems is projecting how the greenhouse gas balance will change over a 1146 

century time scale (Needelman, Emmer, Oreska et al., 2018). 1147 
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5.5 Managing dissolved organic carbon export 1148 

Wetland management can alter rates of wetland DOC export, with implications for both 1149 

climate and water quality. Wetland-derived DOC affects the color of aquatic systems, which can 1150 

be seen by the casual observer as the tea-colored water draining from swamps and organic-rich 1151 

soils. This colored DOC reduces the penetration of visible and ultraviolet light through the water 1152 

column, can alter temperature gradients and vertical stratification, and affects primary 1153 

production and food web structure (Schindler et al., 1996; Wetzel, 1992; Williamson et al., 1999, 1154 

2015). In aquatic systems, DOC also alters acid-base interactions, often by reducing the acid-1155 

neutralizing capacity (Driscoll et al., 1994), and can alter the bioavailability of metals including 1156 

aluminum, copper, and lead (Brooks et al., 2007; Landre et al., 2009; McAvoy, 1988). 1157 

Anthropogenic disturbances including drainage, deforestation, and fire can substantially 1158 

change DOC dynamics and the chemical composition of the exported DOC (S. Moore et al., 1159 

2013; Rixen et al., 2016; Strack et al., 2008; Urbanová et al., 2011). The drainage of wetlands 1160 

increases DOC export (Drösler et al., 2014; Kreutzweiser et al., 2008; S. Moore et al., 2013; 1161 

Rixen et al., 2016). The rewetting of wetlands can return DOC export rates to pre-drainage 1162 

levels, although there may be a short-term DOC pulse during the initial stages of rewetting 1163 

(Blain et al., 2014). Further, disturbances such as drainage and deforestation cause an 1164 

increasing fraction of the DOC to be derived from preserved soil carbon rather than recent plant 1165 

production (Gandois et al., 2013; S. Moore et al., 2013). Over time, the depletion of soil carbon 1166 

due to disturbance can reduce the export of DOC (Sippo et al., 2019). Fires in peatlands can 1167 

cause a short-term increase in DOC concentrations and export (Clay et al., 2009; Olivares et al., 1168 

2019; Zhao et al., 2012) but a decrease over the longer-term (1-10 years post-fire; Shibata et 1169 

al., 2003; Worrall et al., 2007). The effects of fire on DOC export may be less important than the 1170 

effects of climate change in northern peat-dominated catchments (Burd et al., 2018). Lastly, 1171 

wetlands export substantially more DOC per unit area to aquatic systems than do other land use 1172 

types (Raymond & Hopkinson, 2003) so where wetlands have been lost, there likely has been a 1173 
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substantial reduction in the amount of DOC export (Kristensen et al., 2008; Raymond et al., 1174 

2004).  1175 

6 CONCLUSIONS 1176 

The redox environment, organic matter characteristics, and physicochemical factors are 1177 

well understood to be the fundamental attributes that determine the capacity of wetlands to 1178 

capture, preserve, and release carbon. Just one of these – the redox environment – has been 1179 

the focus of most management-informed research and management activities. Yet, even this 1180 

relatively rich body of knowledge has proven insufficient to accurately predict counter-intuitive 1181 

responses that have been observed in response to drainage or impoundment. Developing a 1182 

more robust predictive capacity for carbon-focused management activities in wetlands requires 1183 

a nuanced application of the biogeochemical processes discussed in this chapter. Examples 1184 

include the responses of extracellular enzymes to water table manipulation and the influence of 1185 

plant traits related to O2 transport on rates of organic matter decomposition, CH4 production, 1186 

and CH4 oxidation. Advances in wetland carbon biogeochemistry can be incorporated into 1187 

management plans to enhance carbon preservation, prevent the destabilization of accumulated 1188 

soil carbon, and reduce greenhouse gas emissions, thus maintaining the role of wetlands as 1189 

regulators of global climate. Given the present limits on our ability to optimize wetland creation 1190 

and restoration for specific carbon and greenhouse gas emission goals, it is wise to prioritize 1191 

conservation of existing wetland carbon stocks over restoration and management (Moomaw et 1192 

al., 2018; Neubauer & Verhoeven, 2019). In addition to the biogeochemical considerations we 1193 

have discussed in this chapter, the cost effectiveness of various restoration and management 1194 

actions (e.g., Taillardat et al., 2020) has real-world implications for how wetlands are managed. 1195 

Managing wetlands for climate regulation should be one facet of a comprehensive plan that also 1196 

considers valuable co-benefits of wetlands including water quality improvement, wildlife support, 1197 

water storage, and cultural services. 1198 
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TABLES 

Table 1: Radiative balance and radiative forcing for two hypothetical wetlands at two time periods.  

Wetland Time 

Long-term carbon 

preservation rate CH4 emission rate Radiative balance Radiative forcing 

  (g CO2 m-2 yr-1) (g CH4 m-2 yr-1) (g CO2-eq m-2 yr-1) (g CO2-eq m-2 yr-1) (g CO2-eq m-2 yr-1) 

Wetland 1 Time 1 75 10 450 375 
0 

 Time 2 75 10 450 375 

Wetland 2 Time 1 150 40 1800 1650 
-1080 

 Time 2 150 16 720 570 

 

For Wetland 1, we assume there is no change in rates of carbon preservation or CH4 emission over time. For Wetland 2, we assume 

that a management action lowered CH4 emissions but did not affect long-term carbon preservation. Note that the carbon preservation 

and CH4 emission rates are mass fluxes (e.g., kg CH4 per area per time, not kg C or mol C per area per time). The CH4 mass flux is 

converted to a CO2-equivalent (CO2-eq) flux by multiplying the mass flux by the 100-year SGWP value of 45 (Neubauer & Megonigal, 

2015). The radiative balance of a site is the difference between the warming due to CH4 emissions and the cooling due to carbon 

preservation, with a positive radiative balance indicating that the wetland has a net warming effect over a 100-year period. Radiative 

forcing is the difference in the radiative balance between the two time periods, with negative radiative forcing indicating that a 

wetland is having a smaller warming effect (or a greater cooling effect) in Time 2 vs. Time 1.
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Table 2: Ratios of aerobic to anaerobic metabolism in different wetland types. 

 Aerobic : anaerobic ratio 

Wetland type CO2 production CO2 + CH4 production 

bog 3.8 ± 3.7 4.3 ± 1.8 

fen 7.0 ± 8.2 6.5 ± 7.6 

moor 2.9 ± 1.3 n.a. 

swamp 3.8 ± 1.1 5.0 ± 0.7 

tropical wetland 16.0 ± 10.3 13.4 ± 9.4 

pocosin 2.2 ± 0.7 n.a. 

Overall mean 7.1 ± 1.2 8.2 ± 11.6 

  

Values are means ± standard errors. n = 2 to 15 per wetland type. n.a. indicates data were not 

available for that wetland type. Data from Chapman et al. (2019) 
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Table 3: Nominal oxidation state of carbon for major classes of organic matter. 

 
Compound NOSC 

CO2 + 4 

tannins + 0.64 

carbohydrates + 0.03 

lignin - 0.27 

protein - 0.82 

lipids - 1.34 

CH4 - 4 

 
Average NOSC values for organic matter in sulfidic floodplain sediments are from Figure S4 in 

Boye et al. (2017). The NOSC values for other systems and sites will vary depending on the 

identity of the specific molecules that make up each broad class of organic matter. Values for 

CO2 and CH4 were calculated following LaRowe and Van Cappellen (2011) 
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FIGURE LEGENDS 

Figure 1: Wetland carbon inflows, outflows, and preservation. Only a small fraction of the 

carbon inputs to a wetland is typically preserved over decades to centuries, with an even 

smaller fraction preserved for millennia. The sizes of the arrows are illustrative of the relative 

magnitude of different carbon flows in some wetlands, but the figure does not represent any 

specific wetland type. 

Figure 2: Subsidence due to peatland drainage in California, Florida, Malaysia, Sumatra, and 

the United Kingdom. Data for the United Kingdom are from Hutchinson (1980); all other data 

were extracted from Hooijer et al. (2012). Curves with dashed lines indicate that individual data 

points were not available for plotting. 

Figure 3: Effects of O2 availability on enzyme activity and organic matter decomposition. A 

cascade starts when increased O2 supply stimulates microbial aerobic respiration (A), triggering 

increased phenol oxidase synthesis (B) and a decline in inhibitory phenolics (C). Lower 

inhibition causes higher hydrolase activity (D) and organic matter decomposition (E) releasing 

CO2 and nutrients (E), which can feed back on microbial activity through pH effects related to 

CO2 production and nutrition effects due to release of nitrogen, phosphorus, and other nutrients. 

After Fenner & Freeman (2011). 

Figure 4: CO2 production from peat as a function of the concentration of O-alkyl carbon. Data 

points represent peat soils at a single site and from different soil depths. OC = organic carbon. 

Reproduced from Leifeld et al. (2012). 

Figure 5: Contributions of CO2, CH4, and N2O to radiative forcing due to land use / land cover 

change. Colored bar segments show the radiative forcing from each individual gas. Black circles 

show the overall radiative forcing from all three gases combined. Data from Tan et al. (2020).  
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Figure 1: Wetland carbon inflows, outflows, and preservation. Only a small fraction of the 

carbon inputs to a wetland is typically preserved over decades to centuries, with an even 

smaller fraction preserved for millennia. The sizes of the arrows are illustrative of the relative 

magnitude of different carbon flows in some wetlands, but the figure does not represent any 

specific wetland type.
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Figure 2: Subsidence due to peatland drainage in California, Florida, Malaysia, Sumatra, and 

the United Kingdom. Data for the United Kingdom are from Hutchinson (1980); all other data 

were extracted from Hooijer et al. (2012). Curves with dashed lines indicate that individual data 

points were not available for plotting. 
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Figure 3: Effects of O2 availability on enzyme activity and organic matter decomposition. A 

cascade starts when increased O2 supply stimulates microbial aerobic respiration (A), triggering 

increased phenol oxidase synthesis (B) and a decline in inhibitory phenolics (C). Lower 

inhibition causes higher hydrolase activity (D) and organic matter decomposition (E) releasing 

CO2 and nutrients (E), which can feed back on microbial activity through pH effects related to 

CO2 production and nutrition effects due to release of nitrogen, phosphorus, and other nutrients. 

After Fenner & Freeman (2011). 
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Figure 4: CO2 production from peat as a function of the concentration of O-alkyl carbon. Data 

points represent peat soils at a single site and from different soil depths. OC = organic carbon. 

Reproduced from Leifeld et al. (2012). 
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Figure 5: Contributions of CO2, CH4, and N2O to radiative forcing due to land use / land cover 

change. Colored bar segments show the radiative forcing from each individual gas. Black circles 

show the overall radiative forcing from all three gases combined. Data from Tan et al. (2020). 

 


